The four inequalities that can be used to find the solution of 3 ≤ |x + 2| ≤ 6 is x + 2 ≤ 6, x + 2 ≥ -6, x + 2 ≥ 3 and x + 2 ≤ -3
<h3>What is an
equation?</h3>
An equation is an expression that shows the relationship between two or more variables and numbers.
Given the inequality:
3 ≤ |x + 2| ≤ 6
Hence:
x + 2 ≤ 6, -(x + 2) ≤ 6, 3 ≤ x + 2 and 3 ≤ -(x + 2)
This gives:
x + 2 ≤ 6, x + 2 ≥ -6, x + 2 ≥ 3 and x + 2 ≤ -3
The four inequalities that can be used to find the solution of 3 ≤ |x + 2| ≤ 6 is x + 2 ≤ 6, x + 2 ≥ -6, x + 2 ≥ 3 and x + 2 ≤ -3
Find out more on equation at: brainly.com/question/2972832
#SPJ1
C+s=48
2c+4s=134 ⇒ c+2s=67
subtracting the equations, we get, s=67-48=19,
so, c=48-19=29
Answer:
Explanation:
Method 1
First, list the multiples of both numbers:

To find the lowest common multiple (LCM) of 6 and 8, first express the numbers as a product of its prime factors.

Next, pick the highest powers for each of the numbers:
Answer is <span>c.) ACB=DFE
hope that helps
------------------------------------</span>