Answer: H2O (water)
Explanation:
The answer choices for this question are:
A) H2O
B) N2
C) SO2
D) NO3
E) Cl2
The solution of the problem is:
1) Data:
<span> density, d = 1.4975 g/liter
volume, V = 8.64 liter
pressure, p = 2.384 atm
temperature, T = 349.6 K
2) Formulas:
d = m/V => m = d*V
n = m / molar mass => molar mass = m / n
pV = nRT => n = pV / RT
3) Solution
n = pV / RT = 2.384 atm * 8.64 liter / (0.0821 atm*liter/K*mol * 349.6K)
n = 0.7176 moles
</span>m = dV = 1.4975 g/ liter * <span>8.64 liter = 12.9384 g
molar mass = m / n = 12.9384 g / 0.7176 moles = 18.03 g/mol
That molar mass corresponds to the molar mass of water, therefore the gas is H2O (water vapor).</span>
Answer:
The mass number of the stable daughter product is 208
Explanation:
First thing's first, we have to write out the equation of the reaction. This is given as;
²³²₉₀Th → 6 ⁴₂α + 4 ⁰₋₁ β + X
In order to obtain the identity of X, we have to obtain it's mass numbers and atomic number.
There is conservation of matter so we expect the mass number to remain the same in both the reactant and products.
Mass Number
Reactant = 232
Product = (6* 4 = 24) + (4 * 0 = 0) + x = 24 + x
since reactant = product
232 = 24 + x
x = 232 - 24 = 208
Atomic Number
Reactant = 90
Product = (6* 2 = 12) + (4 * -1 = -4) + x = 8 + x
since reactant = product
90 = 8 + x
x = 90 - 8 = 82
Answer:
8 electrons
Explanation:
As per the <u>octet rule</u>, the atoms possess a tendency to bond in a manner that every atom must have at least eight(8) electrons in its outermost/valence shell. It can be done either by sharing, gaining, or losing electrons from one atom to another. According to this rule, flourine would have 8 electrons in its outer shell after two shared electrons are given to it.