1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neko [114]
3 years ago
14

What is ​ 7/25 ​ written as a decimal?

Mathematics
2 answers:
Luden [163]3 years ago
8 0
B. 0.28

If you need help with math homework or problems try the website called mathway
just olya [345]3 years ago
7 0
The answer B.0.28 ??


You might be interested in
Math on khan academy
IRINA_888 [86]
The answer is b I believe
5 0
2 years ago
Evaluate Dx / ^ 9-8x - x2^
Solnce55 [7]
It depends on what you mean by the delimiting carats "^"...

Since you use parentheses appropriately in the answer choices, I'm going to go out on a limb here and assume something like "^x^" stands for \sqrt x.

In that case, you want to find the antiderivative,

\displaystyle\int\frac{\mathrm dx}{\sqrt{9-8x-x^2}}

Complete the square in the denominator:

9-8x-x^2=25-(16+8x+x^2)=5^2-(x+4)^2

Now substitute x+4=5\sin y, so that \mathrm dx=5\cos y\,\mathrm dy. Then

\displaystyle\int\frac{\mathrm dx}{\sqrt{9-8x-x^2}}=\int\frac{5\cos y}{\sqrt{5^2-(5\sin y)^2}}\,\mathrm dy

which simplifies to

\displaystyle\int\frac{5\cos 
y}{5\sqrt{1-\sin^2y}}\,\mathrm dy=\int\frac{\cos y}{\sqrt{\cos^2y}}\,\mathrm dy

Now, recall that \sqrt{x^2}=|x|. But we want the substitution we made to be reversible, so that

x+4=5\sin y\iff y=\sin^{-1}\left(\dfrac{x+4}5\right)

which implies that -\dfrac\pi2\le y\le\dfrac\pi2. (This is the range of the inverse sine function.)

Under these conditions, we have \cos y\ge0, which lets us reduce \sqrt{\cos^2y}=|\cos y|=\cos y. Finally,

\displaystyle\int\frac{\cos y}{\cos y}\,\mathrm dy=\int\mathrm dy=y+C

and back-substituting to get this in terms of x yields

\displaystyle\int\frac{\mathrm dx}{\sqrt{9-8x-x^2}}=\sin^{-1}\left(\frac{x+4}5\right)+C
4 0
3 years ago
Find the exact value of cos theta​, given that sin thetaequalsStartFraction 15 Over 17 EndFraction and theta is in quadrant II.
vova2212 [387]

Answer:

cos \theta = -\frac{8}{17}

Step-by-step explanation:

For this case we know that:

sin \theta = \frac{15}{17}

And we want to find the value for cos \theta, so then we can use the following basic identity:

cos^2 \theta + sin^2 \theta =1

And if we solve for cos \theta we got:

cos^2 \theta = 1- sin^2 \theta

cos \theta =\pm \sqrt{1-sin^2 \theta}

And if we replace the value given we got:

cos \theta =\pm \sqrt{1- (\frac{15}{17})^2}=\sqrt{\frac{64}{289}}=\frac{\sqrt{64}}{\sqrt{289}}=\frac{8}{17}

For our case we know that the angle is on the II quadrant, and on this quadrant we know that the sine is positive but the cosine is negative so then the correct answer for this case would be:

cos \theta = -\frac{8}{17}

5 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
Translate (-5,-3) and then reflect over the x-axis
katrin2010 [14]
Would it be (5,3) reflected?
5 0
3 years ago
Other questions:
  • A circle graph shows what about a data set?
    13·2 answers
  • Look at the pic to awnser the question plz
    9·2 answers
  • Evaluate: 8 – 4(5) + 12. Work and explanation please!
    14·2 answers
  • Solve the system by substitution. y=2x^2-3x-1 y=x-3
    6·2 answers
  • A random sample of 200 books purchased at a local bookstore showed that 72 of the books were murder mysteries. Let 푝be the true
    9·1 answer
  • You leave an 18% tip on a $45.00 dinner bill.how much was the tip.
    12·1 answer
  • Help with nine through ten please
    6·2 answers
  • What is 7 over 11 as a decimal
    9·2 answers
  • PLEASE HELP!!!
    13·1 answer
  • Solve for B in the picture below
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!