Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Anything to the 0th power is 1
- Exponential Rule [Rewrite]:
- Exponential Rule [Root Rewrite]:
<u>
</u>
<u>Calculus</u>
Derivatives
Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
<em />
<em />
<em />
<u>Step 2: Differentiate</u>
- Chain Rule:
![\displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%28x%20%2B%20%5Csqrt%7Bx%7D%29%5E%7B2%20-%201%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%20%2B%20%5Csqrt%7Bx%7D%5D)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%28x%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%5E%7B2%20-%201%7D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D)
- Simplify:
![\displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%28x%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5D)
- Basic Power Rule:

- Simplify:

- Rewrite [Exponential Rule - Rewrite]:

- Multiply:
![\displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%202%5B%28x%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%29%20%2B%20%5Cfrac%7Bx%20%2B%20x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B2x%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%5D)
- [Brackets] Add:

- Multiply:

- Rewrite [Exponential Rule - Root Rewrite]:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e
You can approximate e by substituting large values for (1 + 1/n)^n into the expression.
<h3>How to illustrate the expression?</h3>
It should be noted that an expression can simply be used to illustrate the information given in a data.
In this case, you can approximate e by substituting large values for (1 + 1/n)^n into the expression.
Learn more about expressions on:
brainly.com/question/723406
#SPJ1
Answer:
-2
Step-by-step explanation:
f[g(x)
=f(3x^2+6x-2)
=2 (3x^2+6x-2)+14
=6x^2+12x-4+14
=6x^2+12x+10
f[g(-2)]=6 (-2)^2+12×(-2)+10
=12- 24+10
=-2
8/10s of the crates are filled with animals, half of those are holding cats so 4/10s are holding cats so I believe 4/10s of the total crates are holding cats
So the function we are looking for should look like f(x)=a(x-1)2-2, and since the parabola passes through (4,5), we have 5=a(4-1)2-2, which means 5=9a-2, so a = (7/9) and f(x) = (7/9)(x-1)2-2.