Answer:
(c) 115.2 ft³
Step-by-step explanation:
The volume of a composite figure can be found by decomposing it into figures whose volumes are easy to compute. Here, the figure can be nicely represented as a cube and a square pyramid.
__
<h3>Cube</h3>
The volume of the cube on the left is given by ...
V = s³
V = (4.2 ft)³ = 74.088 ft³
__
<h3>Pyramid</h3>
The volume of the pyramid on the right is given by ...
V = 1/3Bh . . . . . where B is the area of the square base
V = 1/3(s²)h = (4.2 ft)²(7 ft) = 41.16 ft³
__
<h3>Total</h3>
The volume of the composite figure is the sum of these volumes:
cube volume + pyramid volume = 74.088 ft³ +41.16 ft³ = 115.248 ft³
The volume of the composite figure is about 115.2 ft³.
Answer:
PQ= 84cm
step-by-step explanation:
98/7= 14
14x6=84
PQ= 84cm
Bear in mind that, when it comes to trigonometric functions, the location of the exponent can be a bit misleading, however recall that sin²(θ) is really [ sin( θ )]²,
![\bf 2sin^2(2x)=2\implies sin^2(2x)=\cfrac{2}{2} \\\\\\ sin^2(2x)=1\implies [sin(2x)]^2=1\implies sin(2x)=\pm\sqrt{1} \\\\\\ sin(2x)=\pm 1\implies sin^{-1}[sin(2x)]=sin^{-1}(\pm 1)](https://tex.z-dn.net/?f=%5Cbf%202sin%5E2%282x%29%3D2%5Cimplies%20sin%5E2%282x%29%3D%5Ccfrac%7B2%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Asin%5E2%282x%29%3D1%5Cimplies%20%5Bsin%282x%29%5D%5E2%3D1%5Cimplies%20sin%282x%29%3D%5Cpm%5Csqrt%7B1%7D%0A%5C%5C%5C%5C%5C%5C%0Asin%282x%29%3D%5Cpm%201%5Cimplies%20sin%5E%7B-1%7D%5Bsin%282x%29%5D%3Dsin%5E%7B-1%7D%28%5Cpm%201%29)
One angle is inside a right triangle
Answer:
The original height of the tree is 18 m.
Step-by-step explanation:
Please see attached photo for explanation.
From the diagram, we shall determine the value of 'x'. This can be obtained by using the pythagoras theory as follow:
x² = 5² + 12²
x² = 25 + 144
x² = 169
Take the square root of both side
x = √169
x = 13 m
Finally, we shall determine the original height of the tree. This can be obtained as follow.
From the question given above, the tree was broken from a height of 5 m from the ground which form a right angle triangle with x being the Hypothenus as illustrated in the diagram.
Thus, the original height of the will be the sum of 5 and x i.e
Height = 5 + x
x = 13 m
Height = 5 + 13
Height = 18 m
Therefore, the original height of the tree is 18 m.