Answer:
<h2> </h2><h2>

</h2>
Step-by-step explanation:
<h3><em><u>Question</u></em><em><u>:</u></em><em><u>-</u></em></h3>
- To find the Binomial theorem form of
<h3><em><u>As</u></em><em><u> </u></em><em><u>we</u></em><em><u> </u></em><em><u>know</u></em><em><u>:</u></em><em><u>-</u></em></h3>
<em>As</em><em> </em><em>in</em><em> </em><em>Bin</em><em>omial</em><em> </em><em>theorem</em><em> </em><em>:</em><em>-</em>
<h3><em><u>Solution</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em></h3>

- <em>Hence</em><em>,</em><em> </em><em>on</em><em> </em><em>using</em><em> </em><em>the</em><em> </em><em>Binomial</em><em> </em><em>theorem</em><em>,</em><em> </em>

- <em>On</em><em> </em><em>formatting</em><em> </em>

- <em>On</em><em> </em><em>further</em><em> </em><em>formatting</em><em>.</em><em> </em>

<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>required</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em>

Answer:
circumference of the cake board = 109.9 cm
Step-by-step explanation:
diameter of cake = 30cm
diameter of cake board = 5cm longer than 30cm = 5 + 30 = 35cm
radius cake board = diameter ÷ 2 = 35 ÷ 2 = 17.5 cm
radius of cake board = 17.5 cm
circumference of a circle = 2 × π × r (where π = 3.14)
circumference of a circle = 2 × 3.14 × 17.5 = 109.9 cm
Therefore the circumference of the cake board = 109.9 cm
Answer:
Length of the minor arc AB = 5.27777777778 cm
Step-by-step explanation:
Here you would require a simple proportionality.
The ratio of the degree of the minor arc (95 degrees) over the total, 360 degrees of every circle, comparative to the length of the minor over the circumference (20 cm).
Here we can propose that the length of the minor can be equal to x.
Now let's substitute the known values:
95 / 360 = x / 20
Now cross multiply:
360 * x = 95 * 20 ⇒
360x = 1900 ⇒
x = 5.27777777778 ⇒
length of the minor arc AB = 5.27777777778 cm
A.) An equilateral triangle has three lines of symmetry. It has rotational symmetry of order 3. It has three equal sides.
b.) A Square (4 sides) has 4 Lines of Symmetry.
c.) A Regular Hexagon (6 sides) has 6 Lines of Symmetry