1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elina [12.6K]
3 years ago
10

What's the algebraic expression of "The greatest possible value of 3y is 30"

Mathematics
2 answers:
steposvetlana [31]3 years ago
8 0
This would be your answer: 3y  \leq  30
oee [108]3 years ago
5 0
If 3y's grestest possible value is 30, that means 3y can't be greater than 30. So it has to be less than or equal to 30.

3y is leas then or equal to 30
y is less than or equal to 10
You might be interested in
Find the vertices and foci of the hyperbola. 9x2 − y2 − 36x − 4y + 23 = 0
Xelga [282]
Hey there, hope I can help!

NOTE: Look at the image/images for useful tips
\left(h+c,\:k\right),\:\left(h-c,\:k\right)

\frac{\left(x-h\right)^2}{a^2}-\frac{\left(y-k\right)^2}{b^2}=1\:\mathrm{\:is\:the\:standard\:equation\:for\:a\:right-left\:facing:H}
with the center of (h, k), semi-axis a and semi-conjugate - axis b.
NOTE: H = hyperbola

9x^2-y^2-36x-4y+23=0 \ \textgreater \  \mathrm{Subtract\:}23\mathrm{\:from\:both\:sides}
9x^2-36x-4y-y^2=-23

\mathrm{Factor\:out\:coefficient\:of\:square\:terms}
9\left(x^2-4x\right)-\left(y^2+4y\right)=-23

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}9
\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Divide\:by\:coefficient\:of\:square\:terms:\:}1
\frac{1}{1}\left(x^2-4x\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}

\mathrm{Convert}\:x\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x^2-4x+4\right)-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)

\mathrm{Convert}\:y\:\mathrm{to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y^2+4y+4\right)=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Convert\:to\:square\:form}
\frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right)

\mathrm{Refine\:}-\frac{23}{9}+\frac{1}{1}\left(4\right)-\frac{1}{9}\left(4\right) \ \textgreater \  \frac{1}{1}\left(x-2\right)^2-\frac{1}{9}\left(y+2\right)^2=1 \ \textgreater \  Refine
\frac{\left(x-2\right)^2}{1}-\frac{\left(y+2\right)^2}{9}=1

Now rewrite in hyperbola standardform
\frac{\left(x-2\right)^2}{1^2}-\frac{\left(y-\left(-2\right)\right)^2}{3^2}=1

\mathrm{Therefore\:Hyperbola\:properties\:are:}\left(h,\:k\right)=\left(2,\:-2\right),\:a=1,\:b=3
\left(2+c,\:-2\right),\:\left(2-c,\:-2\right)

Now we must compute c
\sqrt{1^2+3^2} \ \textgreater \  \mathrm{Apply\:rule}\:1^a=1 \ \textgreater \  1^2 = 1 \ \textgreater \  \sqrt{1+3^2}

3^2 = 9 \ \textgreater \  \sqrt{1+9} \ \textgreater \  \sqrt{10}

Therefore the hyperbola foci is at \left(2+\sqrt{10},\:-2\right),\:\left(2-\sqrt{10},\:-2\right)

For the vertices we have \left(2+1,\:-2\right),\:\left(2-1,\:-2\right)

Simply refine it
\left(3,\:-2\right),\:\left(1,\:-2\right)
Therefore the listed coordinates above are our vertices

Hope this helps!

8 0
3 years ago
(6m^2-2-5+m)-(3m-4+11m^2)
Murljashka [212]

(6m^2-2-5+m)-(3m-4+11m^2) =

<h2>6m^2 - 2m - 124</h2>
7 0
3 years ago
Emma measured a restaurant and made a scale drawing. The scale of the drawing was 2 centimeters : 1 meter. If the actual width o
soldi70 [24.7K]

Answer:

20000 meters

Step-by-step explanation:

3 0
2 years ago
Given: ​△ACE, BD​∥AE<br><br> Prove: BA/CB=DE/CD<br><br> Drag
gizmo_the_mogwai [7]

Answer:


Step-by-step explanation:

Angle 4 = angle 1 and angle 3 =angle 2        Corresponding angles for two        parallel lines BD and AE

Triangle AED ||| BDE                                       Angle angle congruent

...                                                                       By compendo and dividendo

Thus proved

Since two lines are parallel we have corresponding angles equal and also

sides will be proportional in similar triangles

Using that and adjusting compendo and dividendo we get the desired result

6 0
3 years ago
Read 2 more answers
Evaluate the function rule for the given value. f(x)=3^x for x=-5
FromTheMoon [43]

Answer:

\frac{1}{243}

Step-by-step explanation:

using the rule of exponents

a^{-m} ⇔ \frac{1}{a^{m} }

f(- 5) = 3^{-5} = \frac{1}{3^{5} } = \frac{1}{243}


6 0
3 years ago
Other questions:
  • Which table correctly shows all the sample spaces for tossing a coin and rolling an even number on a six-sided number cube?
    5·1 answer
  • Question
    7·1 answer
  • associated press online provided information from a fiscal analyst stating that during the past 20 years, the average after tax
    13·1 answer
  • Round 11,114 to the nearest thousand
    15·2 answers
  • -5m-9/n+5 + -8m+8/n+5
    11·1 answer
  • Please help due in 20 minutes!
    6·2 answers
  • 5. There are 8 sections of seats in an auditorium. Each section contains at least 150 seats but not more than 200 seats. Which o
    13·1 answer
  • 8. A ship leaves port at 9:00 a.m. and has a bearing of N 70° W. The ship sails
    11·1 answer
  • 0.4 (-4.1 - 3.6b) - 7.9b + 1.59<br><br>-7.7<br><br>-5.7<br><br>5.7<br><br>3.6​
    8·1 answer
  • Use the following net to find the surface area of the solid figure
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!