1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
13

Where is the removable discontinuity of f(x)= x+5/x^2+3x-10 located?

Mathematics
2 answers:
Alex17521 [72]3 years ago
6 0

Answer:    

x= -5

Step-by-step explanation:

we are given with the function:

f(x)=\frac{x+5}{x^2+3x-10}

We will factorize the denominator

x^2+3x-10

x^2+5x-2x-10

x(x+5)-2(x+5)

(x-2)(x+5)

Hence, We can see that (x+5) can be eliminated since, it can get cancelled with the numerator

Hence, the removable discontinuity is at (x+5) or x= -5

Removable discontinuity is that which can be eliminated from the function.


Doss [256]3 years ago
3 0
 get the point of discontinuity we proceed as follows;
f(x)=x+5/x^2+3x-10
f(x)=4x+5x^2-10

this can be written is such a way that they have the same denominator, here we shall have:
f(x)=(4x^3-10x^2+5)/x^2
The denominator= x^2
The numerator=4x^3-10x^2+5

The discontinuity is at the point x=0

the removable discontinuity is the the point x=2

You might be interested in
McDonalds sells a 20-piece chicken nugget for $5.20. What is the cost per nugget?
jonny [76]

Answer:

O.26

Step-by-step explanation:

Divide The cost from the pieces

4 0
3 years ago
Read 2 more answers
Each interior angle of a regular polygon is 140°.Find the number of sides​
castortr0y [4]

Step-by-step explanation:

Each interior angle=140°

(n-2)180°/n=140°

180°n-360°/n=140°

180°n-360°=140°n

180°-140°=360°

40°n=360°

n=360°/40°

n=9

Hence, the number of sides of the polygon is 9.

It is nonagon .

8 0
3 years ago
The standard deviation for a set of data is 8.5. The mean is 215.
mixas84 [53]
The answer to your question is 2.5 hope this helps
6 0
3 years ago
Evaluate.
lys-0071 [83]

Answer:

  361/900

Step-by-step explanation:

  \left(-\dfrac{1}{6}+0.6\left(-\dfrac{1}{3}\right)+1\right)^2=\left(-\dfrac{1}{6}-0.2+1\right)^2\\\\=\left(1-\left(\dfrac{1}{6}+\dfrac{1}{5}\right)\right)^2=\left(1-\dfrac{5+6}{6\cdot5}\right)^2=\left(\dfrac{19}{30}\right)^2=\boxed{\dfrac{361}{900}}

8 0
2 years ago
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
Other questions:
  • workers have painted 920 square feet of an office they have completed 80% of their job how many square feet do they need to. pai
    15·1 answer
  • Napkins come in a variety of packages. A package of 40 napkins sells for $4.59, and a package of 10 napkins sells for $2.30. Fin
    6·1 answer
  • In geometry how you get surface number on a shape with three different measurements
    10·1 answer
  • The height of a tree increases by approximately 2% each year. The tree is currently 45 feet tall. Which expression will calculat
    6·1 answer
  • Divide. Write the quotient in lowest terms. 5÷3 1/3 = ??? Can anyone help me?
    7·2 answers
  • Can someone please help me with this question
    12·2 answers
  • 5x y>_10 x y<_6 x 4y>_12 x>_0 y>_0 minimum for c=10,000x + 20,000y
    14·1 answer
  • What is the determinant of the coefficient matrix of the system
    7·2 answers
  • Find the greatest possible value for a+b+c+d if b is a positive integer and a,b,c,d satisfy the system of equations
    15·2 answers
  • Rewrite 4/21 and 2/9 so that they have a common denominator,
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!