Answer:
15
Step-by-step explanation:
adding 15 black beads gives you 16 black beads and 4 white beads
16/4 =4/1 or 4:1
Step-by-step explanation: Standard form is when we take a polynomial and we write it in order from the greatest degree to the smallest degree.
Let's look at an example which I provided in the image attached.
In this polynomial, I have 2 degrees, 1 degree, and 1 degree above the <em>x</em>.
This is not in the form of least to greatest so I need to write it in descending order. Our constant which in this is 27 will be last in polynomial.
So, you look at the degree of each term and then write each in term in order of degree from greatest to least (descending order).
Answer:
E(Y) = $0.5
Var(Y) = 14.25
you should pay the same amount $0.5
Step-by-step explanation:
E(Y) = = Σ(YP)
P = probability of each outcomes.
Var(Y) = Σ
p − (μ x μ)
E(Y) = (2 x 0.25) +(6 x 0.25) + (0.5 x (-3)) = $0.5
Var(Y) = (
x 0.25) + (
x 0.25) +(
x 0.5) - (
)
= 14.5 - 0.25
Var(Y) = 14.25
for the difference between the payoff and cost of playing to have mean 0, you should pay the same amount $0.5
Answers:
- Discrete
- Continuous
- Discrete
- Continuous
==============================================
Explanations:
- This is discrete because we can't have half a basketball, or any non-whole decimal value to represent the number of basketballs. We can only consider positive whole numbers {1,2,3,4,...}. A discrete set like this has gaps between items. In other words, the midpoint of 2 and 3 (the value 2.5) isn't a valid number of basketballs.
- This is continuous because time values are continuous. We can take any two different markers in time, and find a midpoint between them. For example, the midpoint of 5 minutes and 17 minutes is 11 minutes since (5+17)/2 = 22/2 = 11. Continuous sets like this do not have any gaps between items. We can consider this to be densely packed.
- This is the same as problem 1, so we have another discrete function. You either score a bullseye or you don't. We can't score half a bullseye. The only possible values are {1,2,3,4,...}
- This is similar to problem 2. This function is continuous. Pick any two different positive real numbers to represent the amount of gallons of water. You will always be able to find a midpoint between those values (eg: we can have half a gallon) and such a measurement makes sense.
So in short, always try to ask the question: Can I pick two different values, compute the midpoint, and have that midpoint make sense? If so, then you're dealing with a continuous variable. Otherwise, the data is discrete.