Answer:
The probability that the page will get at least one hit during any given minute is 0.9093.
Step-by-step explanation:
Let <em>X</em> = number of hits a web page receives per minute.
The random variable <em>X</em> follows a Poisson distribution with parameter,
<em>λ</em> = 2.4.
The probability function of a Poisson distribution is:

Compute the probability that the page will get at least one hit during any given minute as follows:
P (X ≥ 1) = 1 - P (X < 1)
= 1 - P (X = 0)

Thus, the probability that the page will get at least one hit during any given minute is 0.9093.
Answer:
d
Step-by-step explanation: