Dada una ecuación de la forma
<h3>y = A sin(B(x + C)) + D</h3>
Tenemos que:
- la amplitud es A
- el periodo es 2π/B
- el desfase es C (a la izquierda es positivo)
- el desplazamiento vertical es D
Sabemos que:
f(x)=1+6Sen(2x+π/3)
Y podemos reescribirla como:
f(x)=6Sen(2(x+π/6))+1
Siendo:
- A = 6 → Amplitud
- T = 2π/B = 2π/2 = π → Período
- C = π/6 → Desfase
- El dominio de un a función trigonométrica es todo el conjunto de los números reales (x ∈ R ).
La imagen de una función trigonométrica de esta forma es:
y ∈ [-A+D,A+D]
y ∈ [-6+1, 6+1]
y ∈ [-5,7]
La gráfica se adjunta.
Answer:
25 - 3x^5
Step-by-step explanation:
-2x^4+16+2x^4+9-3x^5
Combine like terms
-2x^4+2x^4+9+16-3x^5
0 + 25 -3x^5
Start by graphing each line.
• Because the first inequality is smaller than, it will have a dotted (- - -) line.
• Because the second inequality is smaller than or equal to, it will have a solid line (---).
Then, plug in points to see where your shading will go. If the statement is true (x = x), you will shade that area along the line.



0 is less than 2.
Do the same step for the other equation. Your solution to the problem is any point that lies between the shading from both inequalities (where the blue and red meet).
Answer:
y=-2
Step-by-step explanation:
Hello : let A(-3,-4) B(6,2)
the slope is : (YB - YA)/(XB -XA)
(2+4)/(6+3) = 6/9 = 2/3
an equation is the line is : y = ax+b a is a slope
y = (2/3)x+b
but this line passes by (6;2)
so : 2 = (2/3)(6)+b
b = -2
the equation is : y = (2/3)x-2
the the Y intercept of this line when : x= 0 so : y = (2/3)(0)-2
y=-2
Answer:
26.8°
Step-by-step explanation:
The cosine of an angle is the ratio of the adjacent side of the triangle in which the angle is formed to the hypotenuses side of the triangle. The cosine of the angle gives the ratio of these sides. However, the arc cosine of the ratio gives the angle measured in degrees.
If cos B = 0.8926
then arc cosine 0.8926 which may be expressed as cos-1 0.8926 will give the value of B.
B = cos-1 0.8926
= 26.8°