Option A: The sum for the infinite geometric series does not exist
Explanation:
The given series is 
We need to determine the sum for the infinite geometric series.
<u>Common ratio:</u>
The common difference for the given infinite series is given by

Thus, the common difference is 
<u>Sum of the infinite series:</u>
The sum of the infinite series can be determined using the formula,
where 
Since, the value of r is 3 and the value of r does not lie in the limit 
Hence, the sum for the given infinite geometric series does not exist.
Therefore, Option A is the correct answer.
Answer:
Slope= -1
Step-by-step explanation:
Rise over run
2 to the right 2 down = 2/-2
Simplify to -1
The smallest angle is an acute angle. You remember this by thinking "This is a cute and tiny angle"
Answer:
5y + 4 and 7y + 4 - 2y
Step-by-step explanation:
Look at the second choice:-
5y + 4 and 7y + 4 - 2y
Simplifying the second expression:-
7y + 4 - 2y
= 5y + 4
So both expressions are equivalent . Therefore if you plug in 2 or 5 the results will be the same.