Answer:
CLASS FREQUENCIES RELATIVE FREQUENCIES
A 60 0.5
B 12 0.1
C 48 0.4
TOTAL 120 1
Step-by-step explanation:
Given that;
the frequencies of there alternatives are;
Frequency A = 60
Frequency B = 12
Frequency C = 48
Total = 60 + 12 + 48 = 120
Now to determine our relative frequency, we divide each frequency by the total sum of the given frequencies;
Relative Frequency A = Frequency A / total = 60 / 120 = 0.5
Relative Frequency B = Frequency B / total = 12 / 120 = 0.1
Relative Frequency C = Frequency C / total = 48 / 120 = 0.4
therefore;
CLASS FREQUENCIES RELATIVE FREQUENCIES
A 60 0.5
B 12 0.1
C 48 0.4
TOTAL 120 1
Answer:
I think D
Step-by-step explanation:
Sorry if it's wrong, but it's the only one I think makes sense. Brainlist me if u get it right! :)
Answer:
1. t = 0.995 s
2. h = 15.92 ft
Step-by-step explanation:
First we have to look at the following formula
Vf = Vo + gt
then we work it to clear what we want
Vo + gt = Vf
gt = Vf - Vo
t = (Vf-Vo)/g
Now we have to complete the formula with the real data
Vo = 32 ft/s as the statement says
Vf = 0 because when it reaches its maximum point it will stop before starting to lower
g = -32,16 ft/s² it is a known constant, that we use it with the negative sign because it is in the opposite direction to ours
t = (0 ft/s - 32 ft/s) / -32,16 ft/s²
we solve and ...
t = 0.995 s
Now we will implement this result in the following formula to get the height at that time
h = (Vo - Vf) *t /2
h = (32 ft/s - 0 ft/s) * 0.995 s / 2
h = 32 ft/s * 0.995 s/2
h = 31.84 ft / 2
h = 15.92 ft
Answer: 11
Step-by-step explanation:
It is 11 because count from -6...
-6 = 0
-5 = 1
-4 = 2
-3 = 3
-2 = 4
-1 = 5
0 = 6
1 = 7
2 = 8
3 = 9
4 = 10
5 = 11
Hope this helpsand sorry if not
Answer:
what is the full question