Here in the figure, a right angled triangle given.
One angle of other two angles given
.
The hypotenuse of an right angled triangle is always opposite to the right angle. So here, the side of length 18 is hypotenuse..
The side of length 9 is opposite to the ange given
.
So here two sides given and we need to find the third side.
We can get the third side by using either a trigonometric function or by using Pythagoras theorem.
Let's use Pythagoras theorem here.
We know the theorem is if a and b are other two sides and c is the hypotenuse then, ![c^2 = a^2+b^2](https://tex.z-dn.net/?f=%20c%5E2%20%3D%20a%5E2%2Bb%5E2%20)
Here, c = 18, and we can take b = 9 and a is x here. By substituting the values in the formula we will get,
![18^2 = x^2 + 9^2](https://tex.z-dn.net/?f=%2018%5E2%20%3D%20x%5E2%20%2B%209%5E2%20)
![324 = x^2+81](https://tex.z-dn.net/?f=%20324%20%3D%20x%5E2%2B81%20)
Now to get x, we will move 81 to the left side by subtracting it from both sides. We will get,
![324 - 81 = x^2+81-81](https://tex.z-dn.net/?f=%20324%20-%2081%20%3D%20x%5E2%2B81-81%20)
![324-81 = x^2](https://tex.z-dn.net/?f=%20324-81%20%3D%20x%5E2%20)
![243 = x^2](https://tex.z-dn.net/?f=%20243%20%3D%20x%5E2%20)
![x^2 = 243](https://tex.z-dn.net/?f=%20x%5E2%20%3D%20243%20)
We acn get x by taking square root to both sides. We will get,
![\sqrt{x^2} = \sqrt{243}](https://tex.z-dn.net/?f=%20%5Csqrt%7Bx%5E2%7D%20%3D%20%5Csqrt%7B243%7D%20%20)
![x = \sqrt{243}](https://tex.z-dn.net/?f=%20x%20%3D%20%5Csqrt%7B243%7D%20%20)
We have to simplify 243 now. We can write 243 as a multiplication of 81 and 3.
![x = \sqrt{(81)(3)}](https://tex.z-dn.net/?f=%20x%20%3D%20%5Csqrt%7B%2881%29%283%29%7D%20%20)
![x = (\sqrt{81})(\sqrt{3})](https://tex.z-dn.net/?f=%20x%20%3D%20%28%5Csqrt%7B81%7D%29%28%5Csqrt%7B3%7D%29%20%20%20)
![x = 9\sqrt{3}](https://tex.z-dn.net/?f=%20x%20%3D%209%5Csqrt%7B3%7D%20)
So we have got the required answer here. The side x = ![9\sqrt{3}](https://tex.z-dn.net/?f=%209%5Csqrt%7B3%7D%20%20)