Answer:
Step-by-step explanation:
First, look at y = log x. The domain is (0, infinity). The graph never touches the vertical axis, but is always to the right of it. A real zero occurs at x = 1, as log 1 = 0 => (1, 0). This point is also the x-intercept of y = log x.
Then look at y = log to the base 4 of x. The domain is (0, infinity). The graph never touches the vertical axis, but is always to the right of it. Again, a real zero occurs at x = 1, as log to the base 4 of 1 = 0 => (1, 0).
Finally, look at y=log to the base 4 of (x-2). The graph is the same as that of y = log to the base 4 of x, EXCEPT that the whole graph is translated 2 units to the right. Thus, the graph crosses the x-axis at (3, 0), which is also the x-intercept.
1. m<13
2. y>2
3. p>-3
I don't know the answers for the last two
First, we have to solve for x by isolating it on one side.
6x + 10 = -8
(Subtract 10 from both sides)
6x = -18
(Divide both sides by 6)
x = -3
On option C, x is on -3, so that would be the correct answer
Answer:
19.9 miles
Step-by-step explanation:
In this problem we have:
is the distance travelled during the 1st day
is the distance travelled during the 2nd day
is the distance travelled during the 3rd day
is the distance travelled during the 4th day
We notice that the difference between the distance travelled on the (n+1)-th day and the distance travelled on the n-th day doubles every day. In fact:

Which can be rewritten using the general formula:

This means that

By applying this formula recursively, we can find the 7th term, which is the distance travelled on the 7th day:

So, the distance travelled on the 7th day is 19.9 miles.
First is yes
Second is no
Third is no
Fourth is no