Answer:
A- A pH change can cause the enzyme to change its shape
Explanation:
A rise or fall in the pH of the medium from the optimum of pH 7 usually affect the enzymes' active sites of and therefore the shape and the rate of enzyme activity.
Assuming the pH is too low, the enzyme medium becomes acidic;Acidosis. The high Hydrogen ions concentration interacts with the R-groups of the amino acids moiety of the enzymes, this interaction affects the ionization of the R-groups, disrupting the ionic bonding holding these R-groups in shape.
This results in loss of the 3-Dimensional shape arrangements of the protein molecule and therefore of the active sites. Since active sites of enzymes determines the specificity of the <u>enzymes substrate- complex </u> to give <u>enzyme-product complex,</u> the catalytic activity of the enzymes decreases, <u>the rate of reaction decreases,and products formation stops, and the reaction also stops.</u>
The same is applicable to extremely high pH=Alkalosis.
However, the effective buffer system of the body prevents this scenarios from happening in real sense in the body. Through mopping by the haemoglobin, excretion by the kidney, etc
ATP synthesization - Simple and complex lipids or carbohydrates are used to produce ATP through redox reactions. After the hydrolysis of complex carbohydrates, glucose and fructose are formed and the triglycerides are metabolized to form glycerol and fatty acids. ATP is then synthesized by oxidative phosphorylation and photophosphorylation during the energy production with in the living organisms. ATP production usually takes place in the mitochondria of the cell. The important pathways by which ATP is generated are glycolysis, the citric acid cycle (or the Kreb’s cycle), and the electron transport chain (or the oxidative phosphorylation pathway). In these three cycles of cellular respiration adenosine diphosphate (ADP) is converted to ATP and energy is released from molecules.
The correct answer is high, low.
Arteries are part of the circulatory system and are responsible for carrying blood away from the heart and around the body. The arterial blood is oxygenated and this process ensures that every tissue around the body will receive oxygen and nutrients through this blood flow.
Veins are also part of the circulatory system and are responsible for carrying the deoxygenated blood from the tissues back to the heart.
Venous pressure is much lower than the arterial pressure. More specifically, venous pressure ranges from 5 to 8 mmHg, while arterial pressure ranges from 15 to 30 mmHg.
A mutation is a change in a gene
Answer:
A, pleiotropy.
Explanation:
Pleiotropy - genes that have multiple phenotypic effects. Remember that phenotype means a physical characteristic caused by a gene, such as eye color or fur patterns.
Incomplete dominance - when neither allele is dominant and they mix together in the phenotype. A popular example is a red flower crossing with a white flower and resulting in a pink flower.
Epistasis - when two genes contribute to the phenotype, but one gene completely masks another gene. An example would be labrador fur colors.
Multiple alleles - 3 or more alternative forms of a gene, but only 2 alleles can occupy an organism. An example is blood type.
Hope this helps!