Answer:
Can you please post a picture?!
Step-by-step explanation:
Answer:
c
Step-by-step explanation:
Answer: 0.1824
Step-by-step explanation:
Given : The mileage per day is distributed normally with
Mean : 
Standard deviation : 
Let X be the random variable that represents the distance traveled by truck in one day .
Now, calculate the z-score :-

For x= 132 miles per day.

For x= 159 miles per day.

Now by using standard normal distribution table, the probability that a truck drives between 132 and 159 miles in a day will be :-

Hence, the probability that a truck drives between 132 and 159 miles in a day =0.1824
Answer:
P(t) = 12e^1.3863k
Step-by-step explanation:
The general exponential equation is represented as;
P(t) = P0e^kt
P(t) is the population of the mice after t years
k is the constant
P0 is the initial population of the mice
t is the time in months
If after one month there are 48 population, then;
P(1) = P0e^k(1)
48 = P0e^k ...... 1
Also if after 2 months there are "192" mice, then;
192 = P0e^2k.... 2
Divide equation 2 by 1;
192/48 = P0e^2k/P0e^k
4 = e^2k-k
4 = e^k
Apply ln to both sides
ln4 = lne^k
k = ln4
k = 1.3863
Substitute e^k into equation 1 to get P0
From 1, 48 = P0e^k
48 = 4P0
P0 = 48/4
P0 = 12
Get the required equation by substituting k = 1.3863 and P0 = 12 into equation 1, we have;
P(t) = 12e^1.3863k
This gives the equation representing the scenario