Answer:
30 protein molecules per mRNA molecule
Explanation:
In this problem, it is necessary to have into account that the transcriptional process requires six (6) phosphate bonds to synthesize one (1) codon (i.e, each three nucleotides), and also discards 95% more energy to make mRNA, it means 19 times this amount of energy >> 6 x 19 = 114 bonds. In consequence, transcription requires 120 phosphate bonds (6 + 114 = 120), while translation requires four (4) phosphate bonds per codon. From this deduction, it is possible to find the number of protein molecules synthesized with regard to the energy cost of the translation process and the transcriptional process >>> 120 bonds (transcription) /4 bonds (translation) = 30 protein molecules.
Answer:
D.) Gene Flow
Explanation: In a population genetics, gene flow (also known as gene migration or allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population.
<span>Anaerobic </span><span>respiration that does not require oxygen
</span>
The period of the D string on the violin would be 0.0034 seconds.
<h3>What is the period of a wave?</h3>
The period of a generated wave is the time it takes for the wave's wavelength or successive crests or troughs to pass through a specific point. In other words, it is the time required to complete a full cycle of oscillation.
Mathematically, the period of a wave is given by:
Period = 1/f
where f is the frequency of the wave.
In the case of the D string of the violin in the illustrated problem, the frequency of the wave is given as 293 Hz when it is in tune. Thus, the period can be calculated as:
Period = 1/293
= 0.0034 seconds
Thus, the period of oscillation of wave generated by the D string on the violin with a frequency of 293 Hz is 0.0034 seconds.
More on the period of waves can be found here: brainly.com/question/14588679
#SPJ1