Answer:
5.93 years
Step-by-step explanation:
The continuous compounding formula tells you the amount after t years will be ...
A = Pe^(rt) . . . . principal P compounded continuously at annual rate r for t years
7400 = 5500e^(0.05t)
ln(7400/5500) = 0.05t . . . . divide by 5500, take natural logs
t = 20×ln(74/55) ≈ 5.93
It will take about 5.93 years for $5500 to grow to $7400.
Answer:
The score that separates the lower 5% of the class from the rest of the class is 55.6.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:

Find the score that separates the lower 5% of the class from the rest of the class.
This score is the 5th percentile, which is X when Z has a pvalue of 0.05. So it is X when Z = -1.645.


The score that separates the lower 5% of the class from the rest of the class is 55.6.
Answer:
C
Step-by-step explanation:
Answer:
9 : 2 : 4
Step-by-step explanation:
Given
72 : 16 : 32 ( divide each part of the ratio by 8, the LCM of 72, 16, 32 )
= 9 : 2 : 4