Answer:
The electron’s velocity is 0.9999 c m/s.
Explanation:
Given that,
Rest mass energy of muon = 105.7 MeV
We know the rest mass of electron = 0.511 Mev
We need to calculate the value of γ
Using formula of energy


Put the value into the formula


We need to calculate the electron’s velocity
Using formula of velocity




Put the value into the formula



Hence, The electron’s velocity is 0.9999 c m/s.
Answer:
Classification
– Drug (highly regulated)
§ A substance which changes body structure or function.
§ Stimulate hormone secretions
§ Looks like medicine and/or is administered differently than foods
– Dietary Supplement (not highly regulated)
§ Highly refined products
§ No positive nutritional value
Explanation:
https://web.cortland.edu/buckenmeyerp/Lecture14.html
Answer:

Explanation:
We apply Newton's second law at the crate :
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
m=90kg : crate mass
F= 282 N
μk =0.351 :coefficient of kinetic friction
g = 9.8 m/s² : acceleration due to gravity
Crate weight (W)
W= m*g
W= 90kg*9.8 m/s²
W= 882 N
Friction force : Ff
Ff= μk*N Formula (2)
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W = 0
N = W
N = 882 N
We replace the data in the formula (2)
Ff= μk*N = 0.351* 882 N
Ff= 309.58 N
We apply the formula (1) in x direction:
∑Fx = m*ax , ax=0
282 N - 309.58 N = 90*a
a= (282 N - 309.58 N ) / (90)
a= - 0.306 m/s²
Kinematics of the crate
Because the crate moves with uniformly accelerated movement we apply the following formula :
vf²=v₀²+2*a*d Formula (3)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
v₀ = 0.850 m/s
d = 0.75 m
a= - 0.306 m/s²
We replace the data in the formula (3)
vf²=(0.850)²+(2)( - 0.306 )(0.75 )

