<span>The force acting on the ball is the same than the ball acts on the floor at the moment of hitting but in the reverse direction. So the ball produces a force downwards and the floor makes the same force in value but upwards.
Then the value of the force that impulses the ball upward is: F = m * a
where F is force or impulse, m is mass of the ball and a is acceleration (9.8 m/s2)
F = 1.2 kg * 9.8 m/s2 = 11.76 kg*m/s2 = 11.76 Newtons (upwards)</span>
Well this question looks like it makes some assumptions. So assuming that both cars have the same mass and experience the same wind resistance regardless of speed and same internal frictions, then we could say "The car that finishes last has the lowest power". The reason is that for a given race the cars must overcome losses associated with motion. Since they all travel the same distance, the amount of work will be the same for both. This is because work is force times distance. If the force applied is the same in both cases (identical cars with constant wind resistance) and the distance is the same for both (a fair race track) then W=F·d will be the same.
Power, however, is the work done divided by the time over which it is done. So for a slower car, time t will be larger. The power ratio W/t will be smaller for the longer time (slower car).
You could use grams hope this helps
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC