Answer:
23
Step-by-step explanation:
Using the best fit equation y = 1.5x - 1
with x = 16 ( number of years since 2000 ), then
y = (1.5 × 16) - 1 = 24 - 1 = 23
Answer:
the answer is 5
Step-by-step explanation:
f(4) = 3(4) -2
7 - 2 = 5
The figure consists of three objects, a rectangle, a trapezoid, a triangle
Find the area of the rectangle
The rectangle is 16 in long and 9 in wide
a₁ = l × w
a₁ = 16 × 9
a₁ = 144 in²
Find the area of the trapezoid
The base of trapezoid is 31 in and 16 in, and the height is 35 - 20 = 15 in.
a₂ = 1/2 × (a + b) × h
a₂ = 1/2 × (31 + 16) × 15
a₂ = 1/2 × 47 × 15
a₂ = 352.5 in²
Find the area of the triangle
The base of the triangle is 31 in, the height is 20 in
a₃ = 1/2 × b × h
a₃ = 1/2 × 31 × 20
a₃ = 310 in²
Add the area together
a = a₁ + a₂ + a₃
a = 144 + 352.5 + 310
a = 806.5
The answer is 806.5 in²
well, keeping in mind that a year has 12 months, that means that 8 months is 8/12 of a year, when Mrs Rojas pull her money out.
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$6000\\ r=rate\to 4\%\to \frac{4}{100}\dotfill &0.04\\ t=years\to \frac{8}{12}\dotfill &\frac{2}{3} \end{cases} \\\\\\ A=6000[1+(0.04)(\frac{2}{3})]\implies A=6000\left( \frac{77}{75} \right)\implies A=6160](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%20%5C%246000%5C%5C%20r%3Drate%5Cto%204%5C%25%5Cto%20%5Cfrac%7B4%7D%7B100%7D%5Cdotfill%20%260.04%5C%5C%20t%3Dyears%5Cto%20%5Cfrac%7B8%7D%7B12%7D%5Cdotfill%20%26%5Cfrac%7B2%7D%7B3%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D6000%5B1%2B%280.04%29%28%5Cfrac%7B2%7D%7B3%7D%29%5D%5Cimplies%20A%3D6000%5Cleft%28%20%5Cfrac%7B77%7D%7B75%7D%20%5Cright%29%5Cimplies%20A%3D6160)
well, she put in 6000 bucks, got back 160 extra, that's the interest earned in the 8 months.
what if she had left her money for 1 whole year, then
![~~~~~~ \textit{Simple Interest Earned Amount} \\\\ A=P(1+rt)\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill & \$6000\\ r=rate\to 4\%\to \frac{4}{100}\dotfill &0.04\\ t=years\dotfill &1 \end{cases} \\\\\\ A=6000[1+(0.04)(1)]\implies A=6240](https://tex.z-dn.net/?f=~~~~~~%20%5Ctextit%7BSimple%20Interest%20Earned%20Amount%7D%20%5C%5C%5C%5C%20A%3DP%281%2Brt%29%5Cqquad%20%5Cbegin%7Bcases%7D%20A%3D%5Ctextit%7Baccumulated%20amount%7D%5C%5C%20P%3D%5Ctextit%7Boriginal%20amount%20deposited%7D%5Cdotfill%20%26%20%5C%246000%5C%5C%20r%3Drate%5Cto%204%5C%25%5Cto%20%5Cfrac%7B4%7D%7B100%7D%5Cdotfill%20%260.04%5C%5C%20t%3Dyears%5Cdotfill%20%261%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%3D6000%5B1%2B%280.04%29%281%29%5D%5Cimplies%20A%3D6240)
so had she left it in for a year, she'd have gotten 6240, namely 240 in interest, well, what fraction of a year's interest was earned? or worded differently, what fraction is 160(8 months) of 240(1 year)?

Answer:
1.46
Step-by-step explanation:
First find the the mean score before he made a 90.

Now add the score of 90 and calculate.

Subtract the two scores.

His mean test score increased by 1.46.