![\bf ~\hspace{10em}\textit{function transformations} \\\\\\ \begin{array}{llll} f(x)= A( Bx+ C)^2+ D \\\\ f(x)= A\sqrt{ Bx+ C}+ D \\\\ f(x)= A(\mathbb{R})^{ Bx+ C}+ D \end{array}\qquad \qquad \begin{array}{llll} f(x)=\cfrac{1}{A(Bx+C)}+D \\\\\\ f(x)= A sin\left( B x+ C \right)+ D \end{array} \\\\[-0.35em] ~\dotfill\\\\ \bullet \textit{ stretches or shrinks horizontally by } A\cdot B\\\\ \bullet \textit{ flips it upside-down if } A\textit{ is negative}\\ ~~~~~~\textit{reflection over the x-axis}](https://tex.z-dn.net/?f=%5Cbf%20~%5Chspace%7B10em%7D%5Ctextit%7Bfunction%20transformations%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20f%28x%29%3D%20A%28%20Bx%2B%20C%29%5E2%2B%20D%20%5C%5C%5C%5C%20f%28x%29%3D%20A%5Csqrt%7B%20Bx%2B%20C%7D%2B%20D%20%5C%5C%5C%5C%20f%28x%29%3D%20A%28%5Cmathbb%7BR%7D%29%5E%7B%20Bx%2B%20C%7D%2B%20D%20%5Cend%7Barray%7D%5Cqquad%20%5Cqquad%20%5Cbegin%7Barray%7D%7Bllll%7D%20f%28x%29%3D%5Ccfrac%7B1%7D%7BA%28Bx%2BC%29%7D%2BD%20%5C%5C%5C%5C%5C%5C%20f%28x%29%3D%20A%20sin%5Cleft%28%20B%20x%2B%20C%20%5Cright%29%2B%20D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cbullet%20%5Ctextit%7B%20stretches%20or%20shrinks%20horizontally%20by%20%7D%20A%5Ccdot%20B%5C%5C%5C%5C%20%5Cbullet%20%5Ctextit%7B%20flips%20it%20upside-down%20if%20%7D%20A%5Ctextit%7B%20is%20negative%7D%5C%5C%20~~~~~~%5Ctextit%7Breflection%20over%20the%20x-axis%7D)

with that template in mind, let's see
down by 5 units, D = -5
to the left by 4 units, C = +4

Answer:
Step-by-step explanation:
look at 2=x-y=2
move this term to the left (2)
it becomes 2=x-y+2=0
and thats your results
Examples: x^2-2x=-1, 3x-x-x+a-a=5, (x^2-1)/(x+1), 2x-(x+x)
Answer:
<u>Option D. The student is completely incorrect because there is no solution to this inequality. </u>
Step-by-step explanation:
<u>The question is as following:</u>
A student found the solution below for the given inequality.
|x-9|<-4
x-9>4 and x-9<-4
x>13 and x<5
Which of the following explains whether the student is correct?
A. The student is completely correct because the student correctly wrote and solved the compound inequality.
B. The student is partially correct because only one part of the compound inequality is written correctly.
C. The student is partially correct because the student should have written the statements using “or” instead of “and.”
D. The student is completely incorrect because there is no solution to this inequality.
==========================================================
Given: |x-9| < -4
We should know that the out put of modulus always will be greater than or equal to zero.
So, The inequality always will not be true (unlogic condition)
So, There is no solution to this inequality.
The answer is option D
D. The student is completely incorrect because there is no solution to this inequality.
Answer:
I think the answer is C
Step-by-step explanation:
。☆✼★ ━━━━━━━━━━━━━━━ ☾
Use this equation:
(difference/original) x 100
Substitute in the values:
(150/450) x 100
Solve:
percentage = 33.333
Thus, the answer is option B
Have A Nice Day ❤
Stay Brainly! ヅ
- Ally ✧
。☆✼★ ━━━━━━━━━━━━━━━━ ☾