Answer: 1st,2nd, and 4th one are correct.
Step-by-step explanation:
Factor the following:
3 n^4 + 21 n^3 + 27 n^2
Factor 3 n^2 out of 3 n^4 + 21 n^3 + 27 n^2:
Answer: 3 n^2 (n^2 + 7 n + 9)
r
sin
θ
=
−
3
Explanation:
Imagine we have a point
P
with Rectangular (also called Cartesian) coordinates
(
x
,
y
)
and Polar coordinates
(
r
,
θ
)
.
The following diagram will help us visualise the situation better:
https://keisan.casio.com/exec/system/1223526375
https://keisan.casio.com/exec/system/1223526375
We can see that a right triangle is formed with sides
x
,
y
and
r
, as well as an angle
θ
.
We have to find the relation between the Cartesian and Polar coordinates, respectively.
By Pythagora's theorem, we get the result
r
2
=
x
2
+
y
2
The only properties we can say about
θ
are its trigonometric functions:
sin
θ
=
y
/
r
⇒
y
=
r
sin
θ
cos
θ
=
x
/
r
⇒
x
=
r
cos
θ
So we have the following relations:
⎧
⎪
⎨
⎪
⎩
r
2
=
x
2
+
y
2
y
=
r
sin
θ
x
=
r
cos
θ
Now, we can see that saying
y
=
−
3
in the Rectangular system is equivalent to say
r
sin
θ
=
−
3
Answer link
Jim G.
May 19, 2018
r
=
−
3
sin
θ
Explanation:
to convert from
cartesian to polar
∙
x
x
=
r
cos
θ
and
y
=
r
sin
θ
⇒
r
sin
θ
=
−
3
⇒
r
=
−
3
sin
θ
We have that
<span>tan(theta)sin(theta)+cos(theta)=sec(theta)
</span><span>[sin(theta)/cos(theta)] sin(theta)+cos(theta)=sec(theta)
</span>[sin²<span>(theta)/cos(theta)]+cos(theta)=sec(theta)
</span><span>the next step in this proof
is </span>write cos(theta)=cos²<span>(theta)/cos(theta) to find a common denominator
so
</span>[sin²(theta)/cos(theta)]+[cos²(theta)/cos(theta)]=sec(theta)<span>
</span>{[sin²(theta)+cos²(theta)]/cos(theta)}=sec(theta)<span>
remember that
</span>sin²(theta)+cos²(theta)=1
{[sin²(theta)+cos²(theta)]/cos(theta)}------------> 1/cos(theta)
and
1/cos(theta)=sec(theta)-------------> is ok
the answer is the option <span>B.)
He should write cos(theta)=cos^2(theta)/cos(theta) to find a common denominator.</span>
Well lets solve for both.
6 + 2 + 4x
Combine like terms.
8 + 4x
Now solve the other one.
6 - (2 - 4x)
Distribute.
6 - 2 + 4x
Combine like terms.
4 + 4x.
These equations are not equivalent because instead of adding two, like in the first one, the second problem is subtracting. So you get 8 + 4x and 4 + 4x. I hope this helps love! :)