The answer would be 75 width
The discount is 50-14 = $36
% discount = (36/50)*100 = 72%
Answer:

Step-by-step explanation:
<h3><u>Given:</u></h3>
y = 12 cm
θ = 24°
Using trigonometric ratio, tan.
![\displaystyle \boxed{tan \theta = \frac{opposite}{adjacent} }\\\\tan \ 24 = \frac{x}{12} \\\\0.445 = \frac{x}{12} \\\\Multiply \ 12 \ to \ both \ sides\\\\0.445 \times 12 = x\\\\5.3 = x\\\\x = 5.3\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cboxed%7Btan%20%5Ctheta%20%3D%20%5Cfrac%7Bopposite%7D%7Badjacent%7D%20%7D%5C%5C%5C%5Ctan%20%5C%2024%20%3D%20%5Cfrac%7Bx%7D%7B12%7D%20%5C%5C%5C%5C0.445%20%3D%20%5Cfrac%7Bx%7D%7B12%7D%20%5C%5C%5C%5CMultiply%20%5C%2012%20%5C%20to%20%5C%20both%20%5C%20sides%5C%5C%5C%5C0.445%20%5Ctimes%2012%20%3D%20x%5C%5C%5C%5C5.3%20%3D%20x%5C%5C%5C%5Cx%20%3D%205.3%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Given that the diameter: d= 0.0625 inch.
So, radius of the wire : r =
= 0.03125 inch
Now the formula to find the cross-sectional area of wire ( circle) is:
A = πr²
= 3.14 * (0.03125)² Since, π = 3.14 and r = 0.03125
=3.14 * 0.000976563
= 0.003066406
= 0.00307 (Rounded to 5 decimal places).
Hence, cross-sectional area of a wire is 0.00307 square inches.
Hope this helps you!
Y=-13/2x+43/2 I hope this helped :3