1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vekshin1
3 years ago
15

Can anyone help me answer this

Mathematics
1 answer:
frozen [14]3 years ago
5 0

Answer:

TV         46   115   138     161   253

Defects  2     5      6         7       11

Step-by-step explanation: I got that rate of change Times 23, so i plug it in to T / 23, D / 23, T = TV's, D = Defects


You might be interested in
I need help plz <br> thanks
m_a_m_a [10]
What are the answer choices in the drop down?
4 0
2 years ago
Y + 2/5x =1 what does y equal?
bezimeni [28]
The answer is Y=-2/5x+1 :)
5 0
3 years ago
Read 2 more answers
The average weight of three dogs is 55 pounds, and the average weight of five cats is 9 pounds. What is the average weight, in p
notsponge [240]

Answer:

Option D is correct

Step-by-step explanation:

Statement 1

Average weight of 3 dogs = 55 pounds

Total weight of 3 dogs = 55 × 3

Total weight of 3 dogs = 165 pound

Statement 2

Average weight of 5 cats = 9 pounds

Total weight of 5 cats = 9 × 5

Total weight of 5 cats = 45 pounds

New Average = 165 + 45/8

New Average = 210/8

New Average = 26.25 pounds

4 0
3 years ago
Read 2 more answers
7+3√5/3+√5 - 7-3√5/3-√5 = a + b√5
daser333 [38]
<h3>Given:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

<h3>To Find:-</h3>

  • The value of a and b

<h3>Solution:-</h3>

\\ \sf \implies\frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7  - 3 \sqrt{5} }{3  -   \sqrt{5} }  = a +  \sqrt{5} b \\

\\ \sf \implies\frac{( \: 7 + 3 \sqrt{5} \:  \: (  3  -   \sqrt{5}) \:  \:  - 7  -  3 \sqrt{5} \:  \: (  3   +    \sqrt{5}) \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 21 - 7 \sqrt{5} \:   +  9    \sqrt{5} - 15) \:  \:  - ( \: 21  + 7 \sqrt{5} \:    -  9    \sqrt{5}  +  15)\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{( \: 6 + 2 \sqrt{5} ) \:  \:  - ( \: 6 - 2 \sqrt{5} )\: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 6 + 2 \sqrt{5}  \:  \:  -  \: \: 6 - 2 \sqrt{5} \: }{(3 +  \sqrt{5})  \:  \:(3 +  \sqrt{5}) }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{3  {}^{2}   -  {\sqrt{5} }^{2}  }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 9 - 5 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: 4 \sqrt{5}  \:  \:   }{ \:  \:  \:  \: 4 \:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies\frac{\: \cancel{4 } \sqrt{5}  \:  \:   }{ \:  \:  \:  \:  \cancel{4 }\:  \:  \:   }   = a +  \sqrt{5}  \:  b\\

\\ \sf \implies \: \sqrt{5}  = a +  \sqrt{5}  \:  b\\

we can also write it as ;

\\ \sf \implies \: 0 + \sqrt{5}  = a +  \sqrt{5}  \:  b\\

★<u> </u><u>Henceforth, the value of a and b are</u> :

→ a = 0

→ b = 1

6 0
2 years ago
Read 2 more answers
Given f: ℝ → ℝ and : ℝ → ℝ , for the following, find f(g(x)) and g(f(x)), and state the domain.
horrorfan [7]

Answer:

Remember, (f\circ g)(x)=f(g(x)) and the range of g must be in the domain of f.

a)

f(g(x))=f(x-1)=(x-1)^2-(x-1)=x^2-2x+1-x+1=x^2-3x+2

g(f(x))=g(x^2-x)=(x^2-x)-1=x^2-x-1

The domain of f(g(x)) and g(f(x)) is the set of reals.

b)

f(g(x))=f(\sqrt{x}-2)=(\sqrt{x}-2)^2-x=\sqrt{x}^2-2*2*\sqrt{x}+2^2-x=-4\sqrt{x}+4

g(f(x))=g(x^2-x)=\sqrt{x^2-x}-2

The domain of f(g(x)) is the set of nonnegative reals and the domain of g(f(x)) is the set of number such that x^2-x\geq 0

c)

f(g(x))=f(\frac{1}{x-1})=(\frac{1}{x-1})^2=\frac{1}{(x-1)^2}

g(f(x))=g(x^2)=\frac{1}{x^2-1}

The domain of f(g(x)) is the set of reals except the 1 and the domain of g(f(x)) is the set of reals except the 1 and -1

d)

f(g(x))=f(\frac{1}{x-1})=\frac{1}{(\frac{1}{x-1}-1)}=\frac{1}{\frac{2-x}{x-1}}=\frac{x-1}{2-x}

g(f(x))=g(\frac{1}{x+2})=\frac{1}{(\frac{1}{x+2}-1)}=\frac{1}{\frac{-x-1}{x+2}}=\frac{x+2}{-x-1}

The domain of f(g(x)) is the set of reals except 2, and the domain of g(f(x)) is the set of reals except -1.

e)

f(g(x))=f(log(2(x+3)))=f(log(2x+6))=log(2x+6)-1

g(f(x))=g(x-1)=log(2(x-1)+6)=log(2x+4)

The domain of f(g(x)) is the set of nonnegative reals except -3. The domain of g(f(x)) is the set of nonnegative reals except -2.

3 0
3 years ago
Other questions:
  • Please help thanks so much 20 points.
    10·1 answer
  • Assume AJKL = APQR. If m P= 52°,m2Q = 48°, and mR= 80°, what is<br> the measure of K?
    10·1 answer
  • Write the numbers from least to greatest. 0.66 -1/3 -5/12
    5·2 answers
  • Terrell sells clay pots. He sells 2 clay pots for $6, 3 clay pots for $9, and 4 clay pots for $12. What is the unit rate of doll
    9·2 answers
  • Math question please help!!!
    7·1 answer
  • 5 points
    9·1 answer
  • Indicate in standard form the equation of the line passing through the given points.
    12·1 answer
  • Select the graph that correctly represents the
    14·1 answer
  • Use the function below to find F-4).<br> F(x) = 2x<br> O A.1/8<br> O B.-16<br> O C.1/16<br> O D.-8
    12·2 answers
  • Mario volunteers 1 day each month at the animal shelter. For y days he cleans for 5.5 hours each day. On the other days he walks
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!