Answer:
- m = (2-(-2))/(2-(-2)) = 4/4 = 1
- y +2 = 1(x +2)
Step-by-step explanation:
The point-slope form of the equation for a line with slope m through point (x1, y1) is ...
y -y1 = m(x -x1)
To find the slope of the line, find the ratio of the difference in y-values of the points to the difference in corresponding x-values. Here, the slope is ...
m = (2 -(-2))/(2 -(-2)) = 4/4 = 1 . . . work to compute slope
The problem statement tells you x1 = -2, y1 = -2. Putting the numbers in to the point-slope form gives ...
y -(-2) = 1(x -(-2))
y + 2 = x + 2 . . . equation form with m, (x1, y1) filled in
__
The answer at the top leaves the slope shown as 1. We don't know how much simplification you are expected to do. Obviously, this <em>could</em> be simplified to y=x, but then the use of (-2, -2) for the point would not be obvious.
Answer:
One of the sides is 6 cm and the other is 8 cm
Step-by-step explanation:
Let's call the unknown sides a and b. From the perimeter information (24 cm) we have:
a + b + hypotenuse = 24
a + b + 10 = 24
a + b = 14
b = 14 - a
So now we can right the Pythagorean theorem as follows:

and from this expression in factor form to be zero a must be 6 or a must be 8.
Therefore the solutions are a = 6 (and therefore b = 14 - 6 = 8)
or a = 8 (and therefore b = 14 - 8 = 6)
Answer:
I belive it would be 1/5. ;;;
The first step is to quickly factor each of the five equations... to do so, find the right factors of the 3rd given number so that they add up in an equal number to the second number... 14 = -7 • -2 and -9 = -7 + -2
a^2 - 9a + 14 = 0
(a - 7) (a - 2)
a - 7 = 0, a = 7
a - 2 = 0, a = 2
{2,7}
a^2 + 9a + 14 = 0
(a + 7) (a + 2)
a + 7 = 0, a = -7
a + 2 = 0, a = -2
{-2, -7}
a^2 + 3a - 10 = 0
(a + 5) (a - 2)
a + 5 = 0, a = -5
a - 2 = 0, a = 2
{-5, 2}
a^2 - 5a - 14 = 0
(a - 7) (a + 2)
a - 7 = 0, a = 7
a + 2 = 0, a = -2
{-2, 7}