Explanation:
2 C(s) + 3 H2(g) = C2H6(g)
<em>The cathode is Y</em>
<h3><em>
Further explanation</em></h3>
Electrolysis uses electrical energy to carry out redox reactions that are not spontaneous.
The ions in the solution flowing electrically will move towards to opposite charge of the electrode
The electrolysis material is an electrolyte which can be a solution or a melt.
In positive pole electrolysis cells - the anode is the site of the oxidation reaction, while the negative pole - the cathode is the reduction reaction site.
The result of the reaction in the anode is based on a substance that easily oxidized while the reaction in the cathode is based on a substance that easily reduced.
Electrons (electricity) enter an electrolysis cell through the negative pole (cathode)
The negative ion from the solution will move towards the positive electrode and release the electrons around the positive electrode (oxidation) and the electrons flow to the negative pole
Whereas around the negative electrode, there is electron binding and a reduction reaction occurs
So if we see the picture the cathode is Y
<h3><em>
Learn more</em></h3><h3><em>
reaction related to electrochemistry brainly.com/question/3461108</em></h3>
<h3><em>
Answer details </em></h3>
Grade: Senior High School
Subject: Chemistry
Chapter: Electrochemistry
Keywords: cathode, anode, oxidation, reduction, negative pole, electrode
The main class of high-temperature superconductors are in the class of copper oxides (only some particular copper oxides) especially the Rare-earth barium copper oxides (REBCOs) such as Yttrium barium copper oxide (YBCO).
<h3>What superconducting material works with the highest temperature?</h3>
As of 2020, the material with the highest accepted superconducting temperature is an extremely pressurized carbonaceous sulfur hydride with a critical transition temperature of +15°C at 267 GPa.
<h3>How do high-temperature superconductors work?</h3>
High-temperature superconductivity, the ability of certain materials to conduct electricity with zero electrical resistance at temperatures above the boiling point of liquid nitrogen, was unexpectedly discovered in copper oxide (cuprate) materials in 1987.
Learn more about high temperature superconductors here:
<h3>
brainly.com/question/1657823</h3><h3 /><h3>#SPJ4</h3>