Answer:
This question is incomplete, the remaining part of the question is:
What is the control group, independent variable and dependent variable?
Control group: Plants placed in 80 degree rooms
Independent variable: Change in temperature
Dependent variable: Change in color of leaves
Explanation:
The independent variable in a scientific experiment is the variable that the experimenter controls or manipulates in order to bring about a change in the dependent variable. In this experiment, the variable manipulated by Justin B is the TEMPERATURE CHANGE.
On the other hand, a variable is said to be dependent if it is the variable that responds to a change made to the independent variable or rather it is the outcome. In this experiment, Justin B is trying to see the outcome on the color change in leaves when exposed to a low temperature, hence, COLOR CHANGE IN LEAVES is the dependent variable.
Control group of an experiment is the group that receives no experimental treatment. It is the group the experimenter considers normal and hence is comparing with his experimental group. In this experiment, Justin B believes the leaves change color in a low temperature, hence, he placed some plants in a lower temperature (60 degree) in order to compare them with when the plants are placed in a higher temperature (80 degree). As far as this experiment is concerned, the plants placed in 80 degrees temperature are believed by Justin B not to undergo color change, hence, they are the CONTROL GROUP while the group he placed in 60 degrees temperature are what he is interested in, making them the EXPERIMENTAL GROUP
Halogens (atoms with 7 valence electrons) and Hydrogen
or generally, atoms with their shells almost full
Answer:
Compound
Explanation:
We want to know if it's a compound or a mixture.
An example of a mixture is salt water: you can heat it hot enough to boil off the water, leaving only the salt. This is a physical change, which is how you know it's a mixture.
Something like gold is a compound: if you heat it, or hit it, you'll still only have gold. You can only break it down by chemical means, which is how you know it's a compound.
To get the theoretical yield of ammonia NH3:
first, we should have the balanced equation of the reaction:
3H2(g) + N2(g) → 2NH3(g)
Second, we start to convert mass to moles
moles of N2 = N2 mass / N2 molar mass
= 200 / 28 = 7.14 moles
third, we start to compare the molar ratio from the balanced equation between N2 & NH3 we will find that N2: NH3 = 1:2 so when we use every mole of N2 we will get 2 times of that mole of NH3 so,
moles of NH3 = 7.14 * 2 = 14.28 moles
finally, we convert the moles of NH3 to mass again to get the mass of ammonia:
mass of NH3 = no.moles * molar mass of ammonia
= 14.28 * 17 = 242.76 g
Answer:
1. The electronic configuration of X is: 1s2 2s2 sp6 3s2
2. The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
3. The formula of the compound form by X and Y is given as: XY
Explanation:
For X to loss two electrons, it means X is a group 2 element. X can be any element in group 2. The electronic configuration of X is:
1s2 2s2 sp6 3s2
To get the electronic configuration of the anion of element Y, let us find the configuration of element Y. This is done as follows:
Y receives two electrons from X to complete its octet. Therefore Y is a group 6 element. The electronic configuration of Y is given below
1s2 2s2 2p4
The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
The formula of the compound form by X and Y is given below :
X^2+ + Y^2- —> XY
Their valency will cancel out thus forming XY