Answer:
domt know which one but this may help
Step-by-step explanation:
when you take 38707 into consideration the 3 would be 30,000 the 8 would be 8,000 and the 7 would be 70
Answer:
C
Step-by-step explanation:
The sequence is arithmetic with n th term
= a₁ + (n - 1)d
where a₁ is the first term and d the common difference
Here a₁ = 1 and d = 3, thus
= 1 + 3(n - 1) = 1 + 3n - 3 = 3n - 2 → C
Please ignore the integral problem
the answer is above the division.
hope this helps , give brainliest
The problem presents 2 variables and 2 conditions to follow to determine the approach in solving the problem. The variables are 52 cards, and 9 cards. The 2 conditions presented would be the teacher giving out one card to each student at a time to each student until all of them are gone. The second variable is more likely made as a clue and the important variable that gives away the approach to be used. The approach to be used is division. This is to ensure that there will be students receiving the 9 cards. Thus, we do it as this: 52 / 9 = ?
The answer would be 5.77778 (wherein 7 after the decimal point is infinite and 8 would just be the rounded of number). This would ensure us that there will be 5 students that can receive 9 cards but there will be 7 cards remaining which goes to the last student, which is supposed to be 8 since she gives one card to each student at a time to each student. So the correct answer would be just 4 students. The fifth student will only receive 8 cards and the last student would have 8, too.
Answer:
Step-by-step explanation:
Independent Variable (IV): Special college preparation program
How will you describe the IV: Independent variable or known as manipulated variable is a variable where the researcher purposely manipulate the variable to see how it affect the results of the experiment.
Dependent variables (DV): Math placement scores of college applicants
How will you measure the DV: DV can be measured by recording the math placement scores of each applicants who have or have not taken the special college preparation program.
Explanation: In this case, the researcher wants to see how taking special college preparation program (IV) can affect the math placement scores of the applicants (DV). Explanation: In this case, the researcher wants to see how taking special college preparation program (IV) can affect the math placement scores of the applicants (DV).
Hypothesis:
If the applicants take the special college preparation program, the applicants will have higher math placement scores compared to the one who have do not take the program.