Speed up to Mississippi Rive = 12 mph
Speed back to original port = 15 mph
Total time taken by the riverboat = 7.5 hours
Total distance covered = ?
We know that the distance covered each side would be the same.
So Distance up to Mississippi Rive = Distance back to original port
⇒
.......... (i)
Let Time taken to reach Mississippi Rive = x .............. (ii)
⇒ Time taken to reach back to original port = 7.5 - x .......... (iii)
Substituting (ii) and (iii) in (i)
⇒ ![{\text} 12 * x = 15 * (7.5 - x)](https://tex.z-dn.net/?f=%7B%5Ctext%7D%2012%20%2A%20x%20%3D%2015%20%2A%20%287.5%20-%20x%29%20)
⇒ ![{\text} 12x = 112.5 - 15x](https://tex.z-dn.net/?f=%7B%5Ctext%7D%2012x%20%3D%20112.5%20-%2015x%20)
⇒ ![{\text} 27x = 112.5](https://tex.z-dn.net/?f=%7B%5Ctext%7D%2027x%20%3D%20112.5%20)
⇒
[/tex]
Using value of x to determine distance traveled:
Distance Traveled up to Mississippi Rive = ![{\text}Speed up to Mississippi Rive * Time taken to reach Mississippi Rive](https://tex.z-dn.net/?f=%7B%5Ctext%7DSpeed%20up%20to%20Mississippi%20Rive%20%2A%20Time%20taken%20to%20reach%20Mississippi%20Rive)
⇒ Distance Traveled up to Mississippi Rive = ![{\text}12 * \frac{112.5}{27}](https://tex.z-dn.net/?f=%7B%5Ctext%7D12%20%2A%20%5Cfrac%7B112.5%7D%7B27%7D)
⇒ Distance Traveled up to Mississippi Rive = 50 miles
Hence, the riverboat traveled total of 50 + 50 = 100 miles