1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAVERICK [17]
3 years ago
14

If a phone card is used to make a long distance phone call, you are charged $0.50 per call plus an additional $0.31 per minute.

Part A: Write an equation that can be used to find the total cost of a phone call that lasts for m minutes. Part B: Shalon was charged $5.15 after using a phone card to make a phone call. For how many minutes did he talk on the phone? Show your work.
Mathematics
1 answer:
Nikitich [7]3 years ago
7 0

Part A: c for cost. c=0.31m+0.5

0.31m is the cost per minute. 0.5 is cost per call.

Part B: 0.31m+0.5=5.15 to solve we must rearrange.

subtract 0.5 from each side giving us 0.31m=4.85

divide by 0.31 giving us m=15.65

You might be interested in
A lighthouse is 90 feet tall. A scale model of the lighthouse has a scale of 1 in: 6 ft. How tall is the model of
Readme [11.4K]

Answer:

The FitnessGram PACER Test is a multistage aerobic capacity test that progressively gets more difficult as it continues. The test is used to measure a student's aerobic capacity as part of the FitnessGram assessment. Students run back and forth as many times as they can, each lap signaled by a beep sound.

Step-by-step explanation:

5 0
2 years ago
There are seven roads that lead to the top of a hill. How many different ways are there to reach the top and then go back down?
rjkz [21]

Answer:

two I have no idea of the question

4 0
3 years ago
Read 2 more answers
6. Two weather tracking stations are on the equator 159 miles apart. A weather balloon is located on a bearing of N 33°E from th
alexdok [17]

Answer:

646.39

there u go.

8 0
2 years ago
Two cars, one going due east at 25 m / sec and the second going due south at 50/3 m / sec are traveling toward the intersection
valkas [14]

Answer:

30 m/s

Step-by-step explanation:

Let's say the distance from the first car to the intersection is x, and the distance from the second car to the intersection is y.

The distance between the cars can be found with Pythagorean theorem:

d² = x² + y²

Taking derivative with respect to time:

2d dd/dt = 2x dx/dt + 2y dy/dt

d dd/dt = x dx/dt + y dy/dt

We know that x = 200, dx/dt = -25, y = 150, and dy/dt = -50/3.

To find dd/dt, we still need to find d.

d² = x² + y²

d² = (200)² + (150)²

d = 250

Plugging everything in:

250 dd/dt = (200) (-25) + (150) (-50/3)

dd/dt = -30

The cars are approaching each other at a rate of 30 m/s at that instant.

4 0
2 years ago
Una lancha que viaja a 10 m/s pasa por debajo de un puente 3 segundos después que ha pasado un bote que viaja a 7 m/s, ¿después
ExtremeBDS [4]

Answer:

La lancha y el bote se encontrarán a 70 metros de distancia del puente.

Step-by-step explanation:

Sea el punto debajo del puente el punto de referencia y que ambas lanchas se desplazan a velocidad a continuación, las ecuaciones cinemáticas para cada embarcación son presentadas a continuación:

Bote a 7 metros por segundo

x_{A} = x_{o}+v_{A}\cdot t (Ec. 1)

Lancha a 10 metros por segundo

x_{B} = x_{o}+v_{B}\cdot (t-3\,s) (Ec. 2)

Donde:

x_{o} - Posición debajo del puente, medido en metros.

x_{A}, x_{B} - Posición final de cada embarcación, medido en metros.

v_{A}, v_{B} - Velocidad de cada embarcación, medida en metros por segundo.

t - Tiempo, medido en segundos.

Para determinar la posición en la que ambas embarcaciones se encuentran, se debe determinar el instante en que ocurre a partir de la siguiente condición: x_{A} = x_{B}

Igualando (Ec. 1) y (Ec. 2) se tiene que:

v_{A}\cdot t = v_{B}\cdot (t-3\,s)

Ahora despejamos el tiempo:

3\cdot v_{B} = (v_{B}-v_{A})\cdot t

t = \frac{3\cdot v_{B}}{v_{B}-v_{A}}

Si sabemos que v_{B} = 10\,\frac{m}{s} y v_{A} = 7\,\frac{m}{s}, entonces:

t = \frac{3\cdot \left(10\,\frac{m}{s} \right)}{10\,\frac{m}{s}-7\,\frac{m}{s}}

t = 10\,s

Ahora, la posición de encuentro es: (x_{o} = 0\,m, v_{A} = 7\,\frac{m}{s} y t = 10\,s)

x_{A} = 0\,m + \left(7\,\frac{m}{s} \right)\cdot (10\,s)

x_{A} = 70\,m

La lancha y el bote se encontrarán a 70 metros de distancia del puente.

6 0
3 years ago
Other questions:
  • EXPLAIN YOUR ANSWER
    8·1 answer
  • −91k + 53 + 92k + 28 = 274 what dose k equal?
    7·1 answer
  • A sailboat travels 48 miles upstream in 6 hours and return back downstream in 4 hours. What is the speed of the boat in still wa
    13·1 answer
  • Godel is asked to perform the addition problem below. Godel believes that because there are more negative numbers, the answer wi
    14·1 answer
  • The slope of the line is_____.<br> (Type an integer or a simplified fraction.)
    15·1 answer
  • What is the domain and range for the function graphed below
    6·1 answer
  • Evaluate expression: evaluate each expression when a = "-2" b=4 and c=-10
    8·1 answer
  • Pls help me with this problem
    6·2 answers
  • Which function is the inverse of f(x) = 2x + 3?
    6·1 answer
  • What are the solutions of the equation x^2+15=79?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!