1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
6

Solve for x.3-sqrt(x)=0 What is the root? If there is none, choose none. x = 3 x = 9 none

Mathematics
1 answer:
Anon25 [30]3 years ago
8 0

Answer:

x = 9

Step-by-step explanation:

You can solve this problem by isolating the variable.

3-√x = 0  

√x = 3 (add √x to both sides of the equation)

x = 9 (square both sides of the equation)

You might be interested in
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Can someone please help me
alexdok [17]

Answer:

idk

Step-by-step explanation:

6 0
3 years ago
Which of the following steps is included in the construction of a parallel line to a given line?
timurjin [86]
If you eat an apple and keep the doctor away then do doctors not like apples
3 0
2 years ago
Read 2 more answers
How is solving −7x = −10.5 different from solving − 1 7 x = −10.5? How are the solutions related? Complete the explanation.
pickupchik [31]
They are different because -7 is not equal to -17
8 0
2 years ago
Which of the following statements are true? Select all that apply.
Goryan [66]

<span>The correlation coefficient is a value that signifies correlation and dependence between two or more values. </span>The following statements are true:
- The correlation coefficient is a unitless number and must always lie between –1.0 and +1.0, inclusive.
- The correlation coefficient, r, gives us information about the strength and direction of a linear relationship between any two variables.
<span>- The larger r is in absolute value, the stronger the relationship is between the two variables.
</span>
8 0
3 years ago
Read 2 more answers
Other questions:
  • Find the percent of the number: 64% 75
    15·2 answers
  • The probability is 1% that an electrical connector that is kept dry fails during the warranty period. If the connector is ever w
    6·1 answer
  • I need help wit statistics
    5·1 answer
  • Please Help?? Emergency!! I will give extra points and mark you brainiest.
    8·1 answer
  • Which equation describes the graph? (In the photo)
    12·1 answer
  • Mr. Joseph bought 9 pounds of fertilizer for his lawn. He uses 2 2/3 pounds for his backyard and 1 2/9 for his front yard. How m
    11·1 answer
  • Someone plz help me i really need help with this
    5·2 answers
  • Find the area of the figure
    7·1 answer
  • How many pints are in 1 gallon?
    5·1 answer
  • Determine if the expression x is a polynomial or not. If it is a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!