Answer:
it more than tripled
Step-by-step explanation:
I'm not sure if you need more but it requires me to type more to send the answer
Answer:
29.4 cm
Step-by-step explanation:
The length of the space diagonal can be found to be the root of the squares of the three orthogonal edge lengths. For a cube, those edge lengths are all the same, so the diagonal length is ...
d = √(17^2 + 17^2 +17^2) = 17√3 ≈ 29.4 . . . . cm
_____
Consider a rectangular prism with edge lengths a, b, c. Then the face diagonal of the face perpendicular to edge "a" has length ...
(face diagonal)^2 = (b^2 +c^2)
and the space diagonal has length ...
(space diagonal)^2 = a^2 + (face diagonal)^2 = a^2 +b^2 +c^2
So, the length of the space diagonal is ...
space diagonal = √(a^2 +b^2 +c^2)
when the prism is a cube, these are all the same (a=b=c). This is the formula we used above.
Answer:
- True for Co-Prime Numbers
- False for Non Co-Prime Numbers
Step-by-step explanation:
<u>STATEMENT:</u> The LCM of two numbers is the product of the two numbers.
This statement is not true except if the two numbers are co-prime numbers.
Two integers a and b are said to be co-prime if the only positive integer that divides both of them is 1.
<u>Example: </u>
- Given the numbers 4 and 7, the only integer that divides them is 1, therefore they are co-prime numbers and their LCM is their product 28.
- However, consider the number 4 and 8. 1,2 and 4 divides both numbers, they are not co-prime, Their LCM is 8 which is not the product of the numbers.
Answer:100 off discount
Step-by-step explanation:
If you use the 20% discount you get only 95 dollars off the price