-6=-7+x
Make the variable to the left hand side and change it’s sign.
-6-x=-7
Move the constant to the right hand side and change its sign.
-x=-7+6
Calculate the sum
-x=-1
Change the signs of both sides of the equation .
X=1
"They have different slopes but the same y-intercept, so they have one solution" is the statement which best describes the two lines.
Answer: Option D
<u>Step-by-step explanation:</u>
Given equations:


As we know that the slope intercept form of a line is
y = m x + c
So, from equation 1 and equation 2 we can see that


So, from the above expressions, we can say that both lines have different slopes but have same y – intercept with one common solution when x = 0.
P(most favorable outcome) = 1 -(0.03 +0.16 -0.01) = 0.82
_____
"repair fails" includes the "infection and failure" case, as does "infection". By adding the probability of "repair fails" and "infection", we count the "infection and failure" case twice. So, we have to subtract the probability of "infection and failure" from the sum of "repaire fails" and "infection" in order to count each bad outcome only once.
The probability of a good outcome is the complement of the probability of a bad outcome.
Answer:
2
Step-by-step explanation: