<h3>
- - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - </h3>
➷ Iron would be attracted to a magnet therefore, you can hover a magnet over the mixture. Doing this would lift out the iron fillings, leaving the sand behind.
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡
Answer:
Theanswer to your question is:
Limiting reactant = FeCl₃
Excess reactant = 1.66 g of Mg
Explanation:
Data
Mg = 41 g = 24.31 g/mol
FeCl₃ = 175 g = 162.2 g/mol
3Mg(s) + 2FeCl₃(s) → 3MgCl₂(s) + 2Fe(s)
3(24.31) of Mg ------------------ 2(162.2) of FeCl₃
72.93 g of Mg ------------------ 324.4 g of FeCl₃
Theoretical Proportion = 324.4/72.93 = 4.44
Practical proportion = 175 / 41 = 4.2
As the proportion disminishes the limiting reactant is FeCl₃.
Excess reactant
72.93 g of Mg ------------------ 324.4 g of FeCl₃
x ------------------------- 175 g of FeCl₃
x = (175 x 72.93) / 324.4
x = 39.34 g of Mg
Excess = 41 - 39.34
= 1.66 g of Mg
For this question, assume that you have 1 compound. This compound is divided in half once, so you are left with 0.5. That 0.5 that remains is divided in half again, this is the second half-life, and you are left with 0.25. The final half life involves dividing 0.25 in half, which means you are left with 0.125. For the answer to make sense, you need to know your conversions between decimals and fractions. To make it simple, if you have 0.125 and you times it by 8, you are left with your initial value of 1. Therefore, after three half-lives, you are left with 1/8th of the compound.