Hello,
Here are your answers:
The proper answers to your questions are....
1. "Chemical bond energy is converted to kinetic energy"...... which causes it to release energy around its surroundings!
2. "Endothermic reactions"...... Endothermic reactions are the things that absorb the energy!
If you need anymore help feel free to ask me!
Hope this helps!
Answer:
I'm srry
Explanation:
PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE don't yell at me I don't know
Answer:
Here's what I've found
Explanation:
Refer to the attachment !
Answer:
Explanation:
4NH₃ (g) + 3O₂ (g) ⇒ 2N₂ (g) + 6H₂ O(1)
Δ
ΔH r =(2ΔH f(N 2 )+6ΔH f (H 2 O(l)))−(4ΔH f (NH 3 (g))+3ΔH f (O 2 (g)))
ΔH rex =[2×0+6×(−286)]−[4×(−46)+3×0]=−1716+186
ΔH rex =−1532kJ/mol
Thermodynamics is a branch of physical chemistry that studies heat and its effects and interactions. Governed by the four main laws, thermodynamics plays a huge role in physics and chemistry, and is also responsible for the law of conservation of energy, a fundamental rule in science.
Answer:
<h3>The answer is 2.16 moles</h3>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>2.16 moles</h3>
Hope this helps you