

<em><u>Solution:</u></em>
Given that:

To find: (fog)(2) and (f + g)(2)
By composite function,
( f o g)(x) = f (g(x))
Substitute g(x) = 4x + 9 in above formula,
( f o g)(x) = f(4x + 9)
To find (fog)(2) substitute x = 2 in above formula
( f o g)(2) = f(4(2) + 9)
( f o g)(2) = f(8 + 9) = f(17)
We know that 


<em><u>To find (f + g)(2)</u></em>
We know that,
(f + g)(x) = f (x) + g(x)
Therefore,
(f + g)(2) = f(2) + g(2)
Substitute x = 2 in f(x) and g(x)


1/6 is ur answer
hope i helped
Answer:
2x -4 -1 +x
Step-by-step explanation:
Answer:
129
Step-by-step explanation:
278 - 149 = 129