Answer:
The constant factor between consecutive terms of a geometric sequence is called the common ratio.
Example:
To find the common ratio , find the ratio between a term and the term preceding it. r=42=2. 2 is the common ratio.
Here, we are required to determine after how many minutes will the two substances be at the same temperature.
The equation of when the two substances will be at the same temperature and the solution are as follows;
(a) The equation is 96.2 + 1.5(x) = 98.5 + 0.8(x).
(b) The solution is, x = 3.285minutes.
For substance A which is currently at 96.2° and rising at 1.5° each minute; It's temperature after x minutes is given as;
For substance B which is currently at 98.5° and rising at 0.8° each minute; It's temperature after x minutes is given as;
(a) For the two substances to be at the same temperature; T(a) must be equal to T(b).
The equation is therefore;.
96.2 + 1.5(x) = 98.5 + 0.8(x)
(b) To determine the solution;
1.5x - 0.8x = 98.5 - 96.2
0.7x = 2.3
x = 2.3/0.7
x = 3.285minutes.
Read more:
brainly.com/question/20248109
Answer:
<u>TO FIND :-</u>
- Length of all missing sides.
<u>FORMULAES TO KNOW BEFORE SOLVING :-</u>
<u>SOLUTION :-</u>
1) θ = 16°
Length of side opposite to θ = 7
Hypotenuse = x


≈ 25.3
2) θ = 29°
Length of side opposite to θ = 6
Hypotenuse = x


≈ 12.3
3) θ = 30°
Length of side opposite to θ = x
Hypotenuse = 11


4) θ = 43°
Length of side adjacent to θ = x
Hypotenuse = 12


≈ 8.8
5) θ = 55°
Length of side adjacent to θ = x
Hypotenuse = 6


≈ 3.4
6) θ = 73°
Length of side adjacent to θ = 8
Hypotenuse = x


≈ 27.3
7) θ = 69°
Length of side opposite to θ = 12
Length of side adjacent to θ = x


≈ 4.6
8) θ = 20°
Length of side opposite to θ = 11
Length of side adjacent to θ = x


≈ 30.2