Answer:
(1, 0.25)
Step-by-step explanation:
To find when f(x)=g(x), then look for a value that is the same for both functions in the table. 0.25 occurs twice for the same x value. This is when they are equal. The solution is (1, 0.25).
Answer:
- x = 0 or 1
- x = ±i/4
- x = -5 (twice)
Step-by-step explanation:
Factoring is aided by having the equations in standard form. The first step in each case is to put the equations in that form. The zero product property tells you that a product is zero when a factor is zero. The solutions are the values of x that make the factors zero.
1. x^2 -x = 0
x(x -1) = 0 . . . . . x = 0 or 1
__
2. 16x^2 +1 = 0
This is the "difference of squares" ...
(4x)^2 - (i)^2 = 0
(4x -i)(4x +i) = 0 . . . . . x = -i/4 or i/4 (zeros are complex)
__
3. x^2 +10x +25 = 0
(x +5)(x +5) = 0 . . . . . x = -5 with multiplicity 2
Answer:
x = -2 or 5
Step-by-step explanation:
y = (x-3)/((x-5)(x+2))
y is undefined when the denominator is zero.
Answer:
The radius of a sphere is 2 millimeters
The surface area of a sphere is 50.24 square millimeters.
The circumference of the great circle of a sphere is 12.56 millimeters.
Step-by-step explanation:
<u><em>Verify each statement</em></u>
case A) The radius of a sphere is 8 millimeters
The statement is false
we know that
The volume of the sphere is equal to

we have


substitute and solve for r


case B) The radius of a sphere is 2 millimeters
The statement is True
(see the case A)
case C) The circumference of the great circle of a sphere is 9.42 square millimeters
The statement is false
The units of the circumference is millimeters not square millimeters
The circumference is equal to

we have

substitute


case D) The surface area of a sphere is 50.24 square millimeters.
The statement is True
Because
The surface area of the sphere is equal to

we have

substitute


case E) The circumference of the great circle of a sphere is 12.56 millimeters.
The statement is true
see the case C
case F) The surface area of a sphere is 25.12 square millimeters
The statement is false
because the surface area of the sphere is 
see the case D