Answer:
1) 
2) ![\sqrt[3]{-1331}=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%3D-11)
3) Evaluating
we get 
4) 
5) 
Step-by-step explanation:
1) 
Prime factors of 1225 : 5x5x7x7
Prime factors of 1024: 2x2x2x2x2x2x2x2x2x2


2) ![\sqrt[3]{-1331}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D)
We know that ![\sqrt[n]{-x}=-\sqrt[n]{x} \ ( \ if \ n \ is \ odd)](https://tex.z-dn.net/?f=%5Csqrt%5Bn%5D%7B-x%7D%3D-%5Csqrt%5Bn%5D%7Bx%7D%20%5C%20%28%20%5C%20if%20%5C%20n%20%5C%20is%20%5C%20odd%29)
Applying radical rule:
![\sqrt[3]{-1331}\\=-\sqrt[3]{1331} \\=-\sqrt[3]{11\times\11\times11}\\=-\sqrt[3]{11^3} \\Using \ \sqrt[n]{x^n}=x \\=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%5C%5C%3D-%5Csqrt%5B3%5D%7B1331%7D%20%5C%5C%3D-%5Csqrt%5B3%5D%7B11%5Ctimes%5C11%5Ctimes11%7D%5C%5C%3D-%5Csqrt%5B3%5D%7B11%5E3%7D%20%5C%5CUsing%20%5C%20%5Csqrt%5Bn%5D%7Bx%5En%7D%3Dx%20%5C%5C%3D-11)
So, ![\sqrt[3]{-1331}=-11](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-1331%7D%3D-11)
3) 
It can be written as:

Evaluating
we get 
4) 
Put value of x, y and z in equation and solve:

So, 
5) 
We know (-a)^n = (a)^n when n is even and (-a)^n = (-a)^n when n is odd

So, 
Physics: each of two or more atomic nuclei that have the same atomic number and the same mass number but different energy states.
chemistry: each of two or more compounds with the same formula but a different arrangement of atoms in the molecule and different properties.
The answer is B) The transformation rule is (x, y) -> (x + 0, y + 4).
t = number of tickets
15t ≥ 1500
so....
step 1. 15t ≥ 1500 --> divide both sides by 15 --> 15t/15 ≥ 1500/15
step 2. t ≥ 100
So 100 at the least, ticket should be sold to reach atleast $1500.
I hope this helps. :)
No because 4=4.00000 and there is that much more than 4.00000 so 4.002 is more