Answer:
65% to go or 35% already delivered
Step-by-step explanation:
Amy has completed 35% of her deliveries since 21/60 is .35
If the question is how much she has left, Amy needs to complete 65% more of her deliveries.
If the question is how much she has completed, she has delivered 35% of her deliveries.
Answer:
Rational numbers can be expressed as a fraction
Squared 5 = 25
25 can be expressed as a fraction- 25/1, so d is correct.
Let me know if this helps!
Answer:
I) If method I is used, population of generalization will include all those people who may have varying exercising habits or routines. They may or may not have a regular excersing habit. In his case sample is taken from a more diverse population
II) Population of generalization will include people who will have similar excersing routines and habits if method II is used since sample is choosen from a specific population
Step-by-step explanation:
past excercising habits may affect the change in intensity to a targeted excersise in different manner. So in method I a greater diversity is included and result of excersing with or without a trainer will account for greater number of variables than method II.
Answer:
(-2, 3)
Step-by-step explanation:
4x + 5y = 7
3x - 2y = -12
Let's solve this by elimination. We want to eliminate one variable at a time. This means we need to multiply the equations to create a common multiple to cancel out a variable.
Let's work with y.
5y and -2y: For these values to cancel out, we need to multiply each term to create a common multiple.
2(4x + 5y = 7)
5(3x - 2y = -12)
Multiply.
8x + 10y = 14
15x - 10y = -60
Eliminate.
23x = -46
Divide both sides by 23.
x = -2
Now that we know x, let's plug it back into one of equations to find y.
4x + 5y = 7
4(-2) + 5y = 7
Multiply.
-8 + 5y = 7
Add.
5y = 15
Divide.
y = 3
Now we know x and y; let's plug both back into the equation we have not checked yet.
3x - 2y = -12
3(-2) - 2(3) = -12
Multiply.
-6 - 6 = -12
Subtract.
-12 = -12
Your solution is correct.
(-2, 3)
Hope this helps!
Play usually continues 7.Qf3+ Ke6 8.Nc3 (see diagram). Black will play 8...Nb4 or 8...Ne7 and follow up with c6, bolstering his pinned knight on d5. If Black plays 8...Nb4, White can force the b4 knight to abandon protection of the d5 knight with 9.a3?! Nxc2+ 10.Kd1 Nxa1 11.Nxd5, sacrificing a rook, but current analysis suggests that the alternatives 9.Qe4, 9.Bb3 and 9.O-O are stronger. White has a strong attack, but it has not been proven yet to be decisive.
Because defence is harder to play than attack in this variation when given short time limits, the Fried Liver is dangerous for Black in over-the-board play, if using a short time control. It is also especially effective against weaker players who may not be able to find the correct defences. Sometimes Black invites White to play the Fried Liver Attack in correspondence chess or in over-the-board games with longer time limits (or no time limit), as the relaxed pace affords Black a better opportunity to refute the White sacrifice.