Answer:
Step-by-step explanation:
Hello!
Your study variable is X: "number of ColorSmart-5000 that didn't need repairs after 5 years of use, in a sample of 390"
X~Bi (n;ρ)
ρ: population proportion of ColorSmart-5000 that didn't need repairs after 5 years of use. ρ = 0.95
n= 390
x= 303
sample proportion ^ρ: x/n = 303/390 = 0.776 ≅ 0.78
Applying the Central Limit Theorem you approximate the distribution of the sample proportion to normal to obtain the statistic to use.
You are asked to estimate the population proportion of televisions that didn't require repairs with a confidence interval, the formula is:
^ρ±
* √[(^ρ(1-^ρ))/n]
=
= 2.58
0.78±2.58* √[(0.78(1-0.78))/390]
0.0541
[0.726;0.834]
With a confidence level of 99% you'd expect that the interval [0.726;0.834] contains the true value of the proportion of ColorSmart-5000 that didn't need repairs after 5 years of use.
I hope it helps!
Sometimes it helps to draw it out...
(17)
C_______M_________Q
|___________________|
21
therefore, CM + MQ = CQ
17 + MQ = 21
MQ = 21 - 17
MQ = 4 <===
Answer:
C. Yes, 3.5.
Step-by-step explanation:
If there is a relationship of direct proportionality for every ordered pair of the table, then the constant of proportionality must the same for every ordered pair. The constant of proportionality (
) is described by the following expression:
(1)
Where:
- Input.
- Output.
If we know that
,
and
, then the constants of proportionalities of each ordered pair are, respectively:









Since
, the constant of proportionality is 3.5.
Answer:
s> 144 2/3
Step-by-step explanation:
I took the test in k12 and i got it right so yea !