Convert 1.5 and 0.8 from meters to millimeters,
1500*800,
A=120,000
Answer:
16m
Step-by-step explanation:
Since the length of the park is 7m, then the other side is also 7m so 46-14 is 32. So 32/2 is 16.
First, you need to set the equation equal to zero:
n^2 + 7n + 10 = 0
Now we factor. We need to find two numbers that add up to 7 and multiply to 10.
2 + 5 = 7
2 * 5 = 10
Now, we just need to write this as a polynomial:
(n + 2) (n + 5)
is our answer.
Hope this helps!
Answer:

Step-by-step explanation:
The given equation is :

We need to find the value of x.
When the exponent 2 removes from LHS, it will shift to RHS as square root as follows :

We know that, 4×4= 16 and 5×5 = 25
So,

So, the solution of the given equation is 4/5.
Answer:
Step-by-step explanation:
<em>Key Differences Between Covariance and Correlation
</em>
<em>The following points are noteworthy so far as the difference between covariance and correlation is concerned:
</em>
<em>
</em>
<em>1. A measure used to indicate the extent to which two random variables change in tandem is known as covariance. A measure used to represent how strongly two random variables are related known as correlation.
</em>
<em>2. Covariance is nothing but a measure of correlation. On the contrary, correlation refers to the scaled form of covariance.
</em>
<em>3. The value of correlation takes place between -1 and +1. Conversely, the value of covariance lies between -∞ and +∞.
</em>
<em>4. Covariance is affected by the change in scale, i.e. if all the value of one variable is multiplied by a constant and all the value of another variable are multiplied, by a similar or different constant, then the covariance is changed. As against this, correlation is not influenced by the change in scale.
</em>
<em>5. Correlation is dimensionless, i.e. it is a unit-free measure of the relationship between variables. Unlike covariance, where the value is obtained by the product of the units of the two variables.
</em>
You can find more here: http://keydifferences.com/difference-between-covariance-and-correlation.html#ixzz4qg5YbiGj