We know that Hardy-Weinberg conditions include the following equations:

where 
And where p = dominant, and q = recessive; this means that
is equal to the homozygous dominant,
is the heterozygous, and
is the homozygous recessive .
So we have 100 total cats, with 4 having the recessive white coat color. That means we have a ratio of
or 0.04. Let that equal our
value.
So when we solve for q, we get:


Now that we have our q value, we can use the other equation to find p:



So then we can solve for our heterozygous population:

This is the ratio of the population. So we then multiply this number by 100 to get the number of cats that are heterozygous:

So now we know that there are 32 heterozygous cats in the population.
Answer:
1. Part A: No
2. Part B: Yes
3: Part C : Yes
4: Part D : No
Explanation:
1) Part A: Facilitated diffusion of glucose into a muscle cell:
No; sodium ion co - transport is required for active transport of glucose but not for facilitated diffusion of glucose
2) Part B: Active transport of dietary phenylalanine across the intestinal mucosa:
Yes; co - transport of sodium ions drives the inward movement of amino acids and can only occur if sodium ions are actively pumped back out again.
3) Part C: Uptake of potassium ions by red blood cells:
Yes; uptake of potassium ions can occur only via a pump that couples the inward pumping of potassium ions to the outward pumping of sodium ions.
4) Part D: Active uptake of lactose by the bacteria in your intestine
No; active uptake of sugars and amino acids in bacteria is driven by a proton gradient.
Id say C. It makes the most sense to me.
Answer:
probably spraying or dusting the plants
Explanation: