Answer: ![sds\\ \\ x^{2} \geq \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \geq \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \pi \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. x^{2} \lim_{n \to \infty} a_n \pi \neq \sqrt{x} \neq](https://tex.z-dn.net/?f=sds%5C%5C%20%5C%5C%20x%5E%7B2%7D%20%5Cgeq%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cgeq%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%5Cpi%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C4%265%266%5C%5C7%268%269%5Cend%7Barray%7D%5Cright%5D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cpi%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Cneq)
Step-by-step explanation:i need the think points
A line parallel to the given one will have the same slope, 0.5. For the purpose here, it is convenient to start with a point-slope form of the equation, then simplify. For slope m and point (h, k), the equation of the line can be written as
... y = m(x -h) +k
We have m=0.5, (h, k) = (-9, 12), so the equation is ...
... y = 0.5(x +9) +12
... y = 0.5x +16.5
John will pay $8.68 for the combined cost of 1 pound of banana and 1 pound of cherries.
Let: b=cost of banana per pound and c=cost of cherries per pound
Equation 1: For 3 pounds of cherries and 2 pounds of bananas, John pays a total of $24.95.
3c + 2b =$24.95
Equation 2: The cost of bananas is $6.50 less than a pound of cherries.
b= c - $6.50
We can substitute the second equation into the first one to solve for the cost of cherries per pound.
3c + (2)(c-$6.50)= $24.95
3c + 2c -$13.00 = $24.95
5c = $24.95 + $13.00
c = $7.59
Substituting the value of c to the second equation to solve for b.
b= $7.59 - $6.50 = $1.09
The combined cost of 1 pound of banana and 1 pound of cherries is $1.09 + $7.59 or $8.68.
For more information regarding the system of equations, please refer to brainly.com/question/25976025.
#SPJ4
Answer:
Step-by-step explanation:don’t kno