First, convert all of the cm measurements to m measurements (so they are all the same unit measurement)
2000 cm = 20 m 800 cm = 8m
<u>Total Perimeter </u>(Note that circumference of a semi-circle is 2 π r/2 = π r)
Add up the lengths of all of the outside edges. I am going to start on the top and move counter-clockwise:
40 + π (10) + 8 + 25 + 8 + (40 - 25 - 10) + 8 + 10 + 8 + π(10)
= 40 + 10π + 41 + (5) + 26 + 10π
= 112 + 20π
= 112 + 62.8
= 174.8
Answer: 174.8 m
<u>Total Area</u>
Split the picture into 5 sections (2 semi-circles, top rectangle, bottom left rectangle, and bottom right rectangle). Find the area for each of those sections and then add their areas together to find the total area.
2 semi-circles is 1 Circle: A = π · r² ⇒ A = π(20/2)² = π(10)² = 100π ≈ 314
top rectangle: A = L x w ⇒ A = 40 x 20 = 800
bottom left rectangle: A = L x w ⇒ A = 25 x 8 = 200
bottom right rectangle: A = L x w ⇒ A = 10 x 8 = 80
Total = 314 + 800 + 200 + 80 = 1394
Answer: 1394 m²
Asking the Math Gods...
550*.082+550=$595.10
$45.10 in tax
I’m pretty sure it would be the third option, 162
Answer:
Step-by-step explanation:
Step-by-step explanation:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
2
+
6
+
4
=
0
2x^{2}+6x+4=0
2x2+6x+4=0
=
2
a={\color{#c92786}{2}}
a=2
=
6
b={\color{#e8710a}{6}}
b=6
=
4
c={\color{#129eaf}{4}}
c=4
=
−
6
±
6
2
−
4
⋅
2
⋅
4
√
2
⋅
2
x=\frac{-{\color{#e8710a}{6}} \pm \sqrt{{\color{#e8710a}{6}}^{2}-4 \cdot {\color{#c92786}{2}} \cdot {\color{#129eaf}{4}}}}{2 \cdot {\color{#c92786}{2}}}
x=2⋅2−6±62−4⋅2⋅4
brainliest and follow and thanks