Answer:
D. Changes in the environment changed each morph's ability to evade predation in different ways.
Explanation:
The moth species<em> Biston betularia</em> has two color morphs, or variants. One has a speckled white and black color, while the other is all black. Over the period of time, the distribution of moths dramatically changed between 1900 and 1950 in such a way that black morph became dominant but speckled morphs became very much declined in abundance. The reasons behind this change was heavy industrial pollution in UK between 1900 and 1950.
When the environment became very polluted, dark and blackish, the speckled moth had more chanced of getting eaten by predators thats why they declined in number as compared to black morphs. On the other hand, backgrounds of grime and soot made black morphs less visible to the predators and they survived well. This is an excellent example of natural selection that only those specie better survive that have the ability to cope better with adverse environmental fluctuations.
Therefore, option D is best option.
Hope it help!
Hello there,
The correct answer is:
C. Hypothesis
Hope this answer has helped you.
Answer:
DNA is located in the nucleus, but can also be found in other cell structures called mitochondria. Since the nucleus is so small, the DNA needs to be tightly packaged into bundles known as chromosomes.
Explanation:
Answer:
•The relationship between the twist and the wild type flower in the first crossing is known as a COMPLETE DOMINANCE
•The relationship between the forked and the wild type flower in the second crossing is also known as a COMPLETE DOMINANCE
•The relationship between the pale and the wild type flower in the third crossing is known as an INCOMPLETE DOMINANCE
Explanation:
A complete dominance is characterised by having one of the genes (the dominant gene) in an heterozygous condition, completely masking the effect of the other (the recessive gene) of thesame allelic pair. E.g. if the genes in allelic is represented with Aa, "A" is said to completely dominate "a" if it does not allow "a" to Express itself phenotypically.
The heterozygous condition is always the result of the F1 generation
and the F2 generation of a Complete dominance is always characterised by a phenotypic ratio of 3:1 which is in line with the results gotten from the first crossing and the second crossing as stated in the question.
An complete dominance is characterised by having an intermediate progeny in the F1 generation which was evident in the result of the third crossing. Also a phenotypic ratio of 1:2:1 in the F2 generation is also a characteristic feature of an Incomplete dominance relationship which was also evident in the third crossing.