1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
3 years ago
14

Evaluate the surface integral. s x2 + y2 + z2 ds s is the part of the cylinder x2 + y2 = 4 that lies between the planes z = 0 an

d z = 3, together with its top and bottom disks
Mathematics
1 answer:
Leya [2.2K]3 years ago
7 0
Parameterize the lateral face T_1 of the cylinder by

\mathbf r_1(u,v)=(x(u,v),y(u,v),z(u,v))=(2\cos u,2\sin u,v

where 0\le u\le2\pi and 0\le v\le3, and parameterize the disks T_2,T_3 as

\mathbf r_2(r,\theta)=(x(r,\theta),y(r,\theta),z(r,\theta))=(r\cos\theta,r\sin\theta,0)
\mathbf r_3(r,\theta)=(r\cos\theta,r\sin\theta,3)

where 0\le r\le2 and 0\le\theta\le2\pi.

The integral along the surface of the cylinder (with outward/positive orientation) is then

\displaystyle\iint_S(x^2+y^2+z^2)\,\mathrm dS=\left\{\iint_{T_1}+\iint_{T_2}+\iint_{T_3}\right\}(x^2+y^2+z^2)\,\mathrm dS
=\displaystyle\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}((2\cos u)^2+(2\sin u)^2+v^2)\left\|{{\mathbf r}_1}_u\times{{\mathbf r}_2}_v\right\|\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+0^2)\left\|{{\mathbf r}_2}_r\times{{\mathbf r}_2}_\theta\right\|\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}((r\cos\theta)^2+(r\sin\theta)^2+3^2)\left\|{{\mathbf r}_3}_r\times{{\mathbf r}_3}_\theta\right\|\,\mathrm d\theta\,\mathrm dr
=\displaystyle2\int_{u=0}^{u=2\pi}\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv\,\mathrm du+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r^3\,\mathrm d\theta\,\mathrm dr+\int_{r=0}^{r=2}\int_{\theta=0}^{\theta=2\pi}r(r^2+9)\,\mathrm d\theta\,\mathrm dr
=\displaystyle4\pi\int_{v=0}^{v=3}(v^2+4)\,\mathrm dv+2\pi\int_{r=0}^{r=2}r^3\,\mathrm dr+2\pi\int_{r=0}^{r=2}r(r^2+9)\,\mathrm dr
=136\pi
You might be interested in
What are the domain and range of the function f(x)=sqrt(x-7) +9
GenaCL600 [577]

Domain: x ≥ 7

Range (7,9)

5 0
3 years ago
Read 2 more answers
Which of the following, to the nearest tenth, is a solution of f(x) = g (x) if f (x) = in (x + 5 ) - 1 and g(x) =x^3 - 2x+1
Dovator [93]

Answer:

c

Step-by-step explanation:

5 0
3 years ago
Plssssss shelp meeeeeee
nexus9112 [7]

Answer:

x=4

Step-by-step explanation:

56/14=4

5 0
3 years ago
Read 2 more answers
What is an equation for the scenario the entrance fee to an amusement park is $9 plus $1.50 for each ride
MAVERICK [17]
E+r=
(e=9)
r=1.50)
or 9+1.50=
I think
3 0
3 years ago
Which is larger 3/4 or 0.73
slava [35]

Answer:

3/4

Step-by-step explanation:

3/4 as a decimal is .75

.75>.73

6 0
3 years ago
Read 2 more answers
Other questions:
  • A researcher investigates whether there is a relationship between hours of sleep and memory for photographs. The researcher assi
    12·2 answers
  • the ratio of goats to sheep at a university research farm is 4: 7. The number of sheep at the arm is 28. what is the number of g
    6·1 answer
  • Factor the quadratic equation below to reveal the solutions. X^2+4x-21=-9
    6·1 answer
  • What is a similarity between the empirical rule and​ chebychev's theorem?
    13·1 answer
  • Please help need it in 1 hour plz help will mark brainleist
    9·1 answer
  • Is 20 quart greater than 80 cups
    15·1 answer
  • 15/20 times 1/4 thank me if u like brainly
    13·1 answer
  • PLEAAASEEE HELP AND EXPLAIN ASAP
    10·2 answers
  • <img src="https://tex.z-dn.net/?f=%28%20%5Csqrt%7B3%20-%20%20%5Csqrt%7B2%20%7B%7D%5E%7B2%7D%20%7D%20%7D%20%29" id="TexFormula1"
    6·2 answers
  • Traveling 1,200 miles in 4 hours
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!