1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murrr4er [49]
3 years ago
11

The figure shows the path of a track. It consists of a semicircular arc BCD and three sides of a rectangle in which AB = 20 cm,

AE = 14 cm and DE= 20 cm.
Taking \pi to be 22/7 , Calculate

(a) the area of the figure
(b) the length of semicircular arc BCD

Mathematics
1 answer:
fredd [130]3 years ago
7 0

\large \mathcal{Answer}

A. Area of given figure = 280 + 77 = 357 cm²

B. length of semicircle = 22 cm

You might be interested in
I need help i got confused after 3 of these
Nikolay [14]
-1, -1 I think is the answer
7 0
3 years ago
4 Tan A/1-Tan^4=Tan2A + Sin2A​
Eva8 [605]

tan(2<em>A</em>) + sin(2<em>A</em>) = sin(2<em>A</em>)/cos(2<em>A</em>) + sin(2<em>A</em>)

• rewrite tan = sin/cos

… = 1/cos(2<em>A</em>) (sin(2<em>A</em>) + sin(2<em>A</em>) cos(2<em>A</em>))

• expand the functions of 2<em>A</em> using the double angle identities

… = 2/(2 cos²(<em>A</em>) - 1) (sin(<em>A</em>) cos(<em>A</em>) + sin(<em>A</em>) cos(<em>A</em>) (cos²(<em>A</em>) - sin²(<em>A</em>)))

• factor out sin(<em>A</em>) cos(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (1 + cos²(<em>A</em>) - sin²(<em>A</em>))

• simplify the last factor using the Pythagorean identity, 1 - sin²(<em>A</em>) = cos²(<em>A</em>)

… = 2 sin(<em>A</em>) cos(<em>A</em>)/(2 cos²(<em>A</em>) - 1) (2 cos²(<em>A</em>))

• rearrange terms in the product

… = 2 sin(<em>A</em>) cos(<em>A</em>) (2 cos²(<em>A</em>))/(2 cos²(<em>A</em>) - 1)

• combine the factors of 2 in the numerator to get 4, and divide through the rightmost product by cos²(<em>A</em>)

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - 1/cos²(<em>A</em>))

• rewrite cos = 1/sec, i.e. sec = 1/cos

… = 4 sin(<em>A</em>) cos(<em>A</em>) / (2 - sec²(<em>A</em>))

• divide through again by cos²(<em>A</em>)

… = (4 sin(<em>A</em>)/cos(<em>A</em>)) / (2/cos²(<em>A</em>) - sec²(<em>A</em>)/cos²(<em>A</em>))

• rewrite sin/cos = tan and 1/cos = sec

… = 4 tan(<em>A</em>) / (2 sec²(<em>A</em>) - sec⁴(<em>A</em>))

• factor out sec²(<em>A</em>) in the denominator

… = 4 tan(<em>A</em>) / (sec²(<em>A</em>) (2 - sec²(<em>A</em>)))

• rewrite using the Pythagorean identity, sec²(<em>A</em>) = 1 + tan²(<em>A</em>)

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (2 - (1 + tan²(<em>A</em>))))

• simplify

… = 4 tan(<em>A</em>) / ((1 + tan²(<em>A</em>)) (1 - tan²(<em>A</em>)))

• condense the denominator as the difference of squares

… = 4 tan(<em>A</em>) / (1 - tan⁴(<em>A</em>))

(Note that some of these steps are optional or can be done simultaneously)

7 0
3 years ago
(-33.28 ÷ -5.2) ÷ -1.6 = ?
tigry1 [53]

Answer:

-4

Step-by-step explanation:

Use PEMDAS

5 0
3 years ago
Read 2 more answers
Solve the following questions and check your results 3) t = 3/4 (+-2)​
balu736 [363]
The answer would be: t= -5/4
3 0
3 years ago
Please help. asap. will mark brainliest
Dahasolnce [82]

Answer:

option 1 and option 2 should be correct

5 0
3 years ago
Other questions:
  • !!!!!!!!!! 18 POINTS!!!!!!!!!!!
    12·2 answers
  • The same astronaut visited Pluto. His weight on Earth was still 170 pounds, and his weight on Pluto was only 10 pounds. He remov
    12·1 answer
  • What is greater or less than
    6·2 answers
  • A small<br> can of soup has a mass of<br> about 400 g. What would its<br> mass be on the moon?
    10·1 answer
  • The area of a rectangle is 144 square centimeters. The width is 9 centimeters. Which of the following statements is true? Select
    15·2 answers
  • Cos (a + 60 ) + Cos (a-60)​
    12·1 answer
  • I need help! plz<br><br><br><br>I'm confuesed​
    7·1 answer
  • HURRY WILL MARK YOU BRAINLIEST
    7·1 answer
  • Can anyone solve this for me?d/dx x/root (1+x^2)<br>ps. the 1+x^2 part is inside the root​
    8·1 answer
  • Discounted 40%. A weed eater originally sells for $145. How much will the weed eater
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!