Answer:
I think the answer is 9ft squared is the perimeter on each side of the kite.
Step-by-step explanation:
V=hpir^2
h=4
r=1.25
v=4pi1.25^2
v=4pi1.5625
v=6.25pi
v=19.625
rounded to hundreth
v=19.63 ft³
Initial balance, I = $2376.10 .
Total amount of purchase made, A = $( 875.22+65.75+45.22+21.23 ) = $1007.42 .
Total amount credit, c = $875.22 .
Fine, f = $45.30 .
Another purchase,
.
So, balance left is :
B = I - A - f - a + c
B = 2376.10 - 1007.42 - 45.30 - 59.4025 + 875.22
B = $2139.1975
Hence, this is the required solution.
Answer:
The new volume is 14,850cm³
Step-by-step explanation:
Given
Volume of a rectangular prism = 550cm
Required
Value of volume when the dimensions are tripled.
The volume of a rectangular prism is calculated using the following formula.
V = lbh
<em>When Volume = 550, the formula is written as follows</em>
550 = lbh
<em>Rearrange</em>
lbh = 550
However, when each dimension is tripled.
This means that,
new length = 3 * old length
new breadth = 3 * old breadth
new height = 3 * old height
<em>Let L, B and H represent the new length, new breadth and new height respectively</em>
In other words,
L = 3l
B = 3b
H = 3h
Calculating new volume
New volume = LBH
Substitute, 3l for L, 3b for B and 3h for H;
V = 3l * 3b * 3h
V = 3 * l * 3 * b * 3 * h
V = 3 * 3 * 3 * l*b*h
V = 27 * lbh
Recall that lbh = 550
So,
V = 27 * 550
V = 14,850
Hence, the new volume is 14,850cm³
Answer:
The expected monetary value of a single roll is $1.17.
Step-by-step explanation:
The sample space of rolling a die is:
S = {1, 2, 3, 4, 5 and 6}
The probability of rolling any of the six numbers is same, i.e.
P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 
The expected pay for rolling the numbers are as follows:
E (X = 1) = $3
E (X = 2) = $0
E (X = 3) = $0
E (X = 4) = $0
E (X = 5) = $0
E (X = 6) = $4
The expected value of an experiment is:

Compute the expected monetary value of a single roll as follows:
![E(X)=\sum x\cdot P(X=x)\\=[E(X=1)\times \frac{1}{6}]+[E(X=2)\times \frac{1}{6}]+[E(X=3)\times \frac{1}{6}]\\+[E(X=4)\times \frac{1}{6}]+[E(X=5)\times \frac{1}{6}]+[E(X=6)\times \frac{1}{6}]\\=[3\times \frac{1}{6}]+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]\\+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]+[4\times \frac{1}{6}]\\=1.17](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum%20x%5Ccdot%20P%28X%3Dx%29%5C%5C%3D%5BE%28X%3D1%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D2%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D3%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5BE%28X%3D4%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D5%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D6%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D%5B3%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B4%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D1.17)
Thus, the expected monetary value of a single roll is $1.17.